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Work and experience (≈ 90% leading)

1 Deep distance metric learning
• CVPR 2019 and TPAMI 2021
• AAAI 2019 Oral

2 Robust deep learning, model calibration and uncertainties:
• A PhD student as the 1st author: Trustworthy and Socially

Responsible ML, NeurIPS 2022
• CVPR 2021
• Preprint (56 citations): “IMAE for Noise-Robust Learning:

Mean Absolute Error Does Not Treat Examples Equally and
Gradient Magnitude’s Variance Matters”

3 (Oxford) Postdoc, Visit Scholar on AI health care (e.g., ECG)
4 (Zenith Ai) Sr. Researcher on Omics AI (e.g., DNA, tRNA,

protein, amino acid, ribosome, molecule docking /
AlphaFold2 / biochemistry)
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Technical novelty and principle
Example weighting is universal in deep learning

We define our interpretation of example weighting [5]:

Definition (Example Weighting). In gradient-based optimi-
sation, the derivative of an example can be interpreted as its
effect on the update of a model. Therefore, a derivative’s
magnitude function equals to a weighting scheme.

Accordingly, a change of the derivative magnitude function, is
implicitly equivalent to, modifying an example weighting scheme.
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Deep distance metric: Overview

Deep 
distance 
metric

learning

Supervised

Self-supervised

Open-set

Closed-set
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Deep distance metric: Vision applications

1 General-purpose image/video clustering / retrieval
2 Body/Face image/video re-identification (i.e., retrieval)

Images or videos
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Why do we need robust deep learning?
Understanding the real-world data with adverse cases
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Adverse cases in real-world data

Out-of-distribution anomalies: Know the unknown
1 The inputs contain only background: no semantic information.
2 The labels do not belong to any class in the training set.

In-distribution anomalies: Detect => Ignore or Correct

1 Single-label noise: also common in annotating molecules
• Noisy annotations.
• Missing annotations.

2 Multi-label noise: to be solved by multi-label training. E.g.,
one molecule may have multiple biological functions.
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Learning objectives of robust deep learning
What is the meaning of robustness here?

1 To learn meaningful patterns on semantically clean data.
2 Without fitting errors/bias.

pi = p(yi |xi ) : probability of predicting xi to its oracle yi .
3 Generalisation to unseen data.
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Generalise to the unseen (e.g., remote
homology)

Build train-validation datasets properly

[1] "Using deep learning to annotate the protein universe." Nature
Biotechnology (2022).
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Robust deep learning projects
Video-based person re-identification (ReID)

ID-aware Quality for Set-based Person Re-identification

Xinshao Wang1,2, Elyor Kodirov2, Yang Hua1,2, Neil M. Robertson1,2

1 School of Electronics, Electrical Engineering and Computer Science, Queen’s University Belfast, UK
2 Anyvision Research Team, UK

{xwang39, y.hua, n.robertson}@qub.ac.uk, {elyor}@anyvision.co

Abstract

Set-based person re-identification (SReID) is a matching
problem that aims to verify whether two sets are of the same
identity (ID). Existing SReID models typically generate a
feature representation per image and aggregate them to rep-
resent the set as a single embedding. However, they can
easily be perturbed by noises – perceptually/semantically
low quality images – which are inevitable due to imperfect
tracking/detection systems, or overfit to trivial images. In
this work, we present a novel and simple solution to this
problem based on ID-aware quality that measures the per-
ceptual and semantic quality of images guided by their ID
information. Specifically, we propose an ID-aware Embed-
ding that consists of two key components: (1) Feature learn-
ing attention that aims to learn robust image embeddings by
focusing on ‘medium’ hard images. This way it can prevent
overfitting to trivial images, and alleviate the influence of
outliers. (2) Feature fusion attention is to fuse image em-
beddings in the set to obtain the set-level embedding. It
ignores noisy information and pays more attention to dis-
criminative images to aggregate more discriminative infor-
mation. Experimental results on four datasets show that our
method outperforms state-of-the-art approaches despite the
simplicity of our approach.

1. Introduction
Set-based person re-identification (SReID) [31, 18, 24,

15] is a matching problem that targets identifying the same
person across multiple non-overlapping cameras. Each per-
son is represented by a set consisting of multiple images.
There has been an increasing attention recently because of
its critical applications in video surveillance, e.g., airport
and shopping mall.

Although many SReID approaches exist [17, 29, 30, 36,
21, 16, 3] , they mainly follow two steps: feature represen-
tation and feature fusion. At high level, the feature repre-
sentation is learned with a deep convolutional neural net-
work (CNN), and then they are aggregated by simple aver-
age fusion of image feature representations in the set. How-

(a) with/without blur

(b) complete/incomplete body

(c) with/without occlusion

(d) single/multiple people in one image

Figure 1: Problems in set-based person re-identification.
Four sets of examples are shown (a-d); each set corresponds
to a particular problem. They are grouped into two: percep-
tual quality and semantic quality problems. (a) belongs to
the first one while the remaining ones belong to another.
Note that some images in (b), (c) and (d) are less seman-
tically related to its set ID due to incomplete body, heavy
occlusion by a different person, and muptiple people in an
image.

ever, since the average fusion treats all images equally in
the set, it ignores the fact that some images are more infor-
mative than the others in the set. To this end, some SReID
methods [35, 28, 18, 24, 15] applied attentive aggregation
in which they modify CNN such that it can generate the at-
tention score for each image to estimate the quality, e.g.,
image quality estimation network [18]. Their main purpose
is to identify low quality/non-discriminative image embed-
dings (features) and ignore them from the set at the fusing
stage. Nevertheless, with regard to the learning strategy, the
attention is learned implicitly without any extra supervision,
instead only guided by the standard loss function. As a re-
sult, in this paper we argue that these quality-based meth-
ods address perceptual quality problems, e.g., blurry images
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Robust deep learning projects
Video-based person ReID

If the cost is expensive to improve the data quality, e.g., improving
super-resolution or detection in set/video-based person ReID,

Example weighting and robust deep learning can help!

Figure 3: FLA aims to learn robust image-level embed-
dings. High quality images and low quality images are ne-
glected because of small gradients and large but mis-leading
gradients respectively; Medium hard images, i.e., medium
quality images, are emphasized, which is a trade-off be-
tween gradient magnitude and gradient correctness.

Figure 4: FFA fuses image-level representations to obtain
the set-level embedding. More discriminative images in the
set are emphasized to accumulate more discriminative infor-
mation into the set representation. The images with higher
ID-aware quality are more discriminative.

weighted fusion of image representations in the set:

Φ (x) =

n∑
i=1

FFAi · zi
n∑

i=1

FFAi

. (4)

The term in denominator
n∑

i=1

FFAi is the sum of FFA scores

for normalisation. At each iteration, FFA scores of images
are computed in the forward process and used as constant
values for just scaling the gradient vectors during gradient
back-propagation.

3.4. Loss Functions

Suppose there are m image sets in each mini-batch,
i.e.,{(xj , yj)}mj=1 and each set contains n images, thus the

mini-batch size is mn.

Weighted Cross-Entropy Loss. To learn robust image rep-
resentations based on FLA scores, we propose a weighted
cross-entropy loss for the image-level ID classification task:

LWCEL = −

m∑
j=1

n∑
i=1

(FLAj
i · log sji )

m∑
j=1

n∑
i=1

FLAj
i

, (5)

where the term in the denominator
m∑
j=1

n∑
i=1

FLAj
i is for nor-

malisation. Accordingly, the partial derivative of LWCEL

w.r.t. sji is:

∂LWCEL

∂sji
=

FLAj
i

m∑
j=1

n∑
i=1

FLAj
i

· (− 1

sji
). (6)

At each iteration, after being computed in the forward
process, FLA scores of images are assumed as constant
values for scaling the gradients during the back-propagation
process. Compared with standard cross-entropy loss, we

use the normalised FLA score FLAj
i

m∑
j=1

n∑
i=1

FLAj
i

to scale image’s

gradient.

Contrastive Loss. For set-based verification, on top of set-
level representations, we employ contrastive loss [7] using
the multi-batch setting [25]. The contrastive loss is a well-
known loss function used for verification task. It pulls sets
from the same identity as close as possible and pushes the
sets from different identities farther than a pre-defined mar-
gin α. Specifically, we construct a pair between every two
set embeddings, resulting in m(m− 1)/2 pairs in total. For
all the set embeddings {(zj , yj)}mj=1 in the mini-batch, we
compute the contrastive loss per pair:

L(α; Φj ,Φk, yjk) = yjkd2jk +(1−yjk) max(0, α−djk)2,
(7)

where yjk = 1 if yj = yk and yjk = 0, otherwise.
djk =

∥∥Φj −Φk
∥∥
2

is the distance between the set pair.
The contrastive loss of the mini-batch is the average loss
over all the pairs:

LCL =
2

m(m− 1)

m−1∑

j=1

m∑

k=j+1

L(α; Φj ,Φk, yjk). (8)

IDE is trained end-to-end by optimising the weighted cross-
entropy loss and set-based contrastive loss jointly:

L = LWCEL + LCL. (9)
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gin α. Specifically, we construct a pair between every two
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is the distance between the set pair.
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Robust deep learning projects
To uncover how a deep model learns under noise [6]

DNN has strong fitting capability, but we find :

Deep models easily fit random noise.

Deep networks learn simple semantic patterns before fitting
noise.

Modern deep neural works tend to be over-confident.

(Ours) Deep neural networks become less confident of learning
semantic patterns before fitting noise when the label noise
rises.
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Robust deep learning projects
To uncover how a deep model learns under noise [6]

1. To reward a low-entropy status other than penalise.
2. Model calibration.
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(a) Standard CCE.
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(b) ProSelfLC with an AT (ours).

Figure: accu and confall along with the iteration when training ResNet18
on CIFAR-100. The symmetric noise rate is r = 40%.
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Bioinformatics
Sequence alignment and distance

1 NGS Sequencing and sequence analysis
• With reference: Bowtie + Samtools
• No reference: overlap-based de novo assembly, then comparing

to known sequences using BLAST
2 Sequence alignment and distance calculation

• MMSeq2
• Pfam domain database + HMMer-based distance
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Bioinformatics
Iterative set-based validation -> improve the algorithm/model

1 Biological wetlab annotation/validation: enrichment/pathway
analysis via Null-Hypothesis Statistical Test.

2 tRNA distance calculation [2]
• Secondary structure and the canonical numbering scheme.
• Identity elements, responsible for recognising cognate aaRS.
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Robust protein understanding
Use the pre-trained transformers to predict or design

projecting the high-dimensional representations down to
two dimensions (2D) using t-SNE [39]. Toward this end, we
took annotations from several sources. First, a non-redun-
dant (PIDE<40%) version of the SCOPe database [40]
(release 2.07 with 14,323 proteins). Second, we mapped pro-
teins into the three major domains of life (archaea, bacteria, or
eukarya) or to viruses (removing all proteins with missing
classifications). The number of iterations for the t-SNE pro-
jections was set to 3,000 and the perplexity to 30 for all plots
with the exception of the amino acid plot for which we used
a perplexity of 5. All visualizations used the same random
seed (42).

2.3 Data for Supervised Training

We also assessed the information captured during self-
supervised pre-training of our protein LMs by using
embeddings extracted from those models as sole input for
supervised training. Although we mostly relied on previ-
ously published data sets to ease comparisons to other
methods, for the supervised training, we also added a novel
test set to refine the evaluation.

Per-Residue Prediction /Single Tokens. To predict properties
of single tokens (here: single amino acids, dubbed residues
when joined in proteins), we used the training set published
with NetSurfP-2.0 [15] describing secondary structure in 3-
and 8-states (class distribution for all data sets in SOM
Tables 4, 3, available online). We also included other public
test data sets, namely CB513 [41]), TS115 [42], and CASP12
[43]. Each of those has severe limitations (CASP12: too
small, CB513 and TS115 redundant and outdated). There-
fore, we added a new test set using only proteins published

after the release of NetSurfP-2.0 (after Jan 1, 2019). We
included proteins from the PDB [44] with resolutions � 2:5
A
�
and � 20 residues. MMSeqs2 [45] with highest sensitivity

(-s 7.5) removed proteins with >20% PIDE to either the
training set or to itself. On top, PISCES [46] removed any
protein considered by its procedure to have >20% PIDE.
These filters reduced the number of new proteins (chains)
from 18k to 364 (dubbed set NEW364).

Per-Protein Prediction/Embedding Pooling. For the predic-
tion of features for entire proteins (analogous to the classifi-
cation of whole sentences in NLP), the DeepLoc [16] data
set was used to classify proteins into (i) membrane-bound
versus water-soluble and (ii) ten classes of subcellular local-
ization (also referred to as cellular compartments).

2.4 Step 1: Self-Supervised Protein LM Pre-Training

We trained six successful LMs in NLP (T5 [47], Electra [48],
BERT [49], Albert [50], Transformer-XL [51] and XLNet [11])
on protein sequences. BERT was the first bidirectional
model in NLP which tried to reconstruct corrupted tokens,
and is considered the de-facto standard for transfer learning
in NLP. Albert reduced BERT’s complexity by hard parame-
ter sharing between its attention layers which allows to
increase the number of attention heads (64 chosen here).
Electra tries to improve the sampling-efficiency of the pre-
training task by training two networks, a generator and a
discriminator. Instead of only reconstructing corrupted
input tokens, the generator (BERT) reconstructs masked
tokens, potentially creating plausible alternatives, and the
discriminator (Electra) detects which tokens were masked.
This enriches the training signal as the loss can be computed
over all tokens instead of the subset of corrupted tokens
(usually only 15 percent). T5 uses the original transformer
architecture proposed for sequence translation, which con-
sists of an encoder that projects a source language to an
embedding space and a decoder that generates a translation
to a target language based on the encoder’s embedding.
Only later, models used either the encoder (BERT, Albert,
Electra) or the decoder (TransformerXL, XLNet), but T5
showed that this simplification might come at a certain price
as it reaches state-of-the-art results in multiple NLP bench-
marks. Additionally, it provides the flexibility to apply dif-
ferent training methodologies and different masking
strategies, e.g., T5 allows to reconstruct spans of tokens
instead of single tokens.

As self-attention is a set-operation and thus order-inde-
pendent, Transformers require explicit positional encoding.
Models trained with sinusoidal position signal like BERT,
Albert or Electra, can process only sequences shorter or
equal to the length of the positional encoding which has to
be set before training. Due to the huge memory requirement
of Transformer-models, this parameter is usually set to a
value lower than the longest proteins, e.g., Titin with 33k
residues. Here, we trained models that were affected by this
limitations (ProtBERT, ProtAlbert, ProtElectra) first on pro-
teins of length � 512, then on proteins � 1024. Only setting
the length of the positional encoding to 40k after pre-train-
ing allowed the models to process protein sequences up to a
length of 40k. In contrast to this, TransformerXL introduced
a memory that allows it to process sequences of arbitrary

Fig. 1. Feature extraction overview - We give a general overview on how
ProtTrans models can be used to derive features (embeddings) for arbi-
trary protein sequences either on the level of single amino acids or whole
proteins and how they can be used for classification tasks on both levels.
First, an example protein sequence ”SEQ” is tokenized and positional
encoding is added. The resulting vectors are passed through any of our
ProtTrans models to create context-aware embeddings for each input
token, i.e., each amino acid. Here, we used the last hidden state of the
Transformer’s attention stack as input for downstream prediction meth-
ods. Those embeddings can either be used directly as input for predic-
tion tasks on the level of individual tokens, e.g., a CNN can be used to
predict an amino acid’s secondary structure. Alternatively, those embed-
dings can be concatenated and pooled along the length-dimension to
get fixed-size embedding irrespective of the input length, i.e., global
average pooling is applied. The resulting protein-level embedding can
be used as input for predicting aspects of proteins, e.g., a FNN can be
used to predict a protein’s cellular localization.

7114 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 10, OCTOBER 2022

[3] "ProtTrans: Toward Understanding the Language of Life Through Self-Supervised Learning." IEEE
Transactions on Pattern Analysis and Machine Intelligence (2022).
[4] "Neural networks to learn protein sequence–function relationships from deep mutational scanning
data." Proceedings of the National Academy of Sciences (2021).
[6] "ProSelfLC: Progressive Self Label Correction Towards A Low-Temperature Entropy State." Ours
under peer review.

22/29



Deep distance metric for Omics AI

1 Exploratory data analysis (EDA): data variances.
• Intraclass: remote homology/evolutionary information
• Interclass: how to discriminate biological molecules/sequences.

2 Iterative active learning for the efficiency of time, data and
labels

Sequences

EC/GO/
Wetlab 
labels

Sequences of 
class_i

Sequences of 
class_j

Grouping

Intraclass

… Visualise

Analyse
Interclass

Intraclass

Deep distance metric

Non-compact 
classes

Overlapped 
classes

Active 
learning
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Industrial R&D overview
Focus: solve & productise real-world impactful problems

• Publication to share research is a plus and encouraged.
• Collaboratively build AI toolboxes, end-to-end AI service

pipelines, etc.

Source: https://dida.do/blog/data-centric-machine-learning
25/29
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Industrial AI Research
Methods = model-centric AI + data-centric AI
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Industrial AI Research
Processes and management

1 Suggest research directions and write proposals to the board.

2 Lead research via task breakdown and an estimated/agreed
timeline using Jira and Confluence.

3 Collaborate, control quality, and maintain conventions using
github code peer review.
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Thanks for your attention.
Questions and discussions are very welcome.

Research topics of Dr. (Amos) Xinshao Wang:
• Deep distance metric learning
• Robust deep learning
• Omics AI + Bioinformatics
• Active learning
• EDA + Visualisation

Homepage: https://xinshaoamoswang.github.io/about/
Blogs: https://xinshaoamoswang.github.io/blogs/
LinkedIn: https://www.linkedin.com/in/xinshaowang/
Github: https://github.com/XinshaoAmosWang
Google Scholar: yOBhB7UAAAAJ
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