Dr. (Amos) Xinshao Wang: Data + Modelling Deep distance metric learning; Robust deep learning; Diverse applications (CV, NLP, Health Care, Omics, etc)

Homepage: https://xinshaoamoswang.github.io/about/ Blogs: https://xinshaoamoswang.github.io/blogs/ LinkedIn: https://www.linkedin.com/in/xinshaowang/ Github: https://github.com/XinshaoAmosWang Google Scholar: yOBhB7UAAAAJ

Email: xinshaowang@gmail.com Phone: +44 (0) 7712 114316

2022-12-14, Novo Nordisk Research Centre Oxford

- 1 Work and experience: a quick glance, more in the CV
- 2 Technical novelty and principle: Example weighting is universal
- 3 Deep distance metric learning
  - Deep distance metric: Definition & Overview
  - Deep distance metric: Vision applications
- 4 Robust deep learning (scope: transparent and interpretable ML) Understanding real-world data and why do we need it Learning objectives
  - Project: Robust video-based person ReID
  - Project: To uncover how a deep model learns under noise
- **5** Omics Al
  - Bioinformatics: Sequence alignment and distance
  - Robust protein understanding
  - Deep distance metric: EDA + Active Learning
- 6 Industrial R&D experience
  - Industrial R&D overview
  - Industrial AI Research = model-centric AI  $_{\pm}$  data-centric AI  $_{\pm}$

- Work and experience: a quick glance, more in the CV
- 2 Technical novelty and principle: Example weighting is universal
- 3 Deep distance metric learning
  - Deep distance metric: Definition & Overview
  - Deep distance metric: Vision applications
- Robust deep learning (scope: transparent and interpretable ML) Understanding real-world data and why do we need it
  - Learning objectives
  - Project: Robust video-based person ReID
  - Project: To uncover how a deep model learns under noise
- **5** Omics Al
  - Bioinformatics: Sequence alignment and distance
  - Robust protein understanding
  - Deep distance metric: EDA + Active Learning
- 6 Industrial R&D experience
  - Industrial R&D overview
  - Industrial AI Research = model-centric AI  $_{a+}$  data-centric AI  $_{a-}$   $_{2}$

### Work and experience ( $\approx$ 90% leading)

- 1 Deep distance metric learning
  - CVPR 2019 and TPAMI 2021
  - AAAI 2019 Oral

2 Robust deep learning, model calibration and uncertainties:

- A PhD student as the 1st author: Trustworthy and Socially Responsible ML, NeurIPS 2022
- CVPR 2021
- **Preprint (56 citations)**: "IMAE for Noise-Robust Learning: Mean Absolute Error Does Not Treat Examples Equally and Gradient Magnitude's Variance Matters"

3 (Oxford) Postdoc, Visit Scholar on AI health care (e.g., ECG)

 (Zenith Ai) Sr. Researcher on Omics AI (e.g., DNA, tRNA, protein, amino acid, ribosome, molecule docking / AlphaFold2 / biochemistry)

- $oldsymbol{1}$  Work and experience: a quick glance, more in the CV
- 2 Technical novelty and principle: Example weighting is universal
- 3 Deep distance metric learning
  - Deep distance metric: Definition & Overview
  - Deep distance metric: Vision applications
- Robust deep learning (scope: transparent and interpretable ML) Understanding real-world data and why do we need it
  - Learning objectives
  - Project: Robust video-based person ReID
  - Project: To uncover how a deep model learns under noise
- **5** Omics Al
  - Bioinformatics: Sequence alignment and distance
  - Robust protein understanding
  - Deep distance metric: EDA + Active Learning
- 6 Industrial R&D experience
  - Industrial R&D overview
  - Industrial AI Research = model-centric Al + data-centric Al = 🔊 🤉

#### Technical novelty and principle Example weighting is universal in deep learning

We define our interpretation of example weighting [5]:

**Definition** (Example Weighting). In gradient-based optimisation, the derivative of an example can be interpreted as its effect on the update of a model. Therefore, a derivative's magnitude function equals to a weighting scheme.

Accordingly, a change of the derivative magnitude function, is implicitly equivalent to, modifying an example weighting scheme.

- **1** Work and experience: a quick glance, more in the CV
- 2 Technical novelty and principle: Example weighting is universal
- **3** Deep distance metric learning
  - Deep distance metric: Definition & Overview Deep distance metric: Vision applications
- ④ Robust deep learning (scope: transparent and interpretable ML) Understanding real-world data and why do we need it
  - Learning objectives
  - Project: Robust video-based person ReID
  - Project: To uncover how a deep model learns under noise
- **5** Omics Al
  - Bioinformatics: Sequence alignment and distance
  - Robust protein understanding
  - Deep distance metric: EDA + Active Learning
- 6 Industrial R&D experience
  - Industrial R&D overview
  - Industrial AI Research = model-centric Al + data-centric Al = 500

### Deep distance metric: Overview



### Deep distance metric: Vision applications

General-purpose image/video clustering / retrieval
 Body/Face image/video re-identification (i.e., retrieval)



The top 4 images in the ranked list of each query

- Work and experience: a quick glance, more in the CV
- 2 Technical novelty and principle: Example weighting is universal
- 3 Deep distance metric learning
  - Deep distance metric: Definition & Overview
    - Deep distance metric: Vision applications
- A Robust deep learning (scope: transparent and interpretable ML) Understanding real-world data and why do we need it Learning objectives Project: Robust video-based person ReID
  - Project: To uncover how a deep model learns under noise

**5** Omics Al

- Bioinformatics: Sequence alignment and distance
- Robust protein understanding
- Deep distance metric: EDA + Active Learning
- 6 Industrial R&D experience
  - Industrial R&D overview
  - Industrial AI Research = model-centric Al + data-centric Al = 🥠

#### Why do we need robust deep learning? Understanding the real-world data with adverse cases



Horse class: The first three images are deer semantically.



This video is labelled as the person wearing black skirt.



This video is labelled as the person wearing green shirt.

### Adverse cases in real-world data

#### Out-of-distribution anomalies: Know the unknown

- 1 The inputs contain only background: no semantic information.
- 2 The labels do not belong to any class in the training set.

#### In-distribution anomalies: Detect => Ignore or Correct

- 1 Single-label noise: also common in annotating molecules
  - Noisy annotations.
  - Missing annotations.
- 2 Multi-label noise: to be solved by multi-label training. E.g., one molecule may have multiple biological functions.

#### Learning objectives of robust deep learning What is the meaning of robustness here?

To learn meaningful patterns on semantically clean data.
 Without fitting errors/bias.



p<sub>i</sub> = p(y<sub>i</sub>|x<sub>i</sub>) : probability of predicting x<sub>i</sub> to its oracle y<sub>i</sub>.
3 Generalisation to unseen data.

# Generalise to the unseen (e.g., remote homology)

Build train-validation datasets properly



[1] "Using deep learning to annotate the protein universe." Nature Biotechnology (2022).

#### Robust deep learning projects Video-based person re-identification (ReID)



(a) with/without blur



(b) complete/incomplete body



(c) with/without occlusion



(d) single/multiple people in one image

#### Robust deep learning projects Video-based person ReID

If the cost is expensive to improve the data quality, e.g., **improving super-resolution or detection** in set/video-based person ReID,

Example weighting and robust deep learning can help!



Robust deep learning projects To uncover how a deep model learns under noise [6]

DNN has strong fitting capability, but we find:

Deep models easily fit random noise.

Deep networks learn simple semantic patterns before fitting noise.

Modern deep neural works tend to be over-confident.

(Ours) Deep neural networks become less confident of learning semantic patterns before fitting noise when the label noise rises.

### Robust deep learning projects

To uncover how a deep model learns under noise [6]

1. To reward a low-entropy status other than penalise.

#### 2. Model calibration.



- Work and experience: a quick glance, more in the CV
- 2 Technical novelty and principle: Example weighting is universal
- Oeep distance metric learning
  - Deep distance metric: Definition & Overview
  - Deep distance metric: Vision applications
- A Robust deep learning (scope: transparent and interpretable ML) Understanding real-world data and why do we need it
  - Learning objectives
  - Project: Robust video-based person ReID
  - Project: To uncover how a deep model learns under noise
- **5** Omics Al
  - Bioinformatics: Sequence alignment and distance
  - Robust protein understanding
  - Deep distance metric: EDA + Active Learning
- 6 Industrial R&D experience
  - Industrial R&D overview
  - Industrial AI Research = model-centric Al  $\pm$  data-centric Al  $\pm$   $-\infty$

### Bioinformatics

#### Sequence alignment and distance

#### 1 NGS Sequencing and sequence analysis

- With reference: Bowtie + Samtools
- No reference: overlap-based de novo assembly, then comparing to known sequences using BLAST
- 2 Sequence alignment and distance calculation
  - MMSeq2
  - Pfam domain database + HMMer-based distance



### Bioinformatics

#### Iterative set-based validation -> improve the algorithm/model

- Biological wetlab annotation/validation: enrichment/pathway analysis via Null-Hypothesis Statistical Test.
- 2 tRNA distance calculation [2]
  - Secondary structure and the canonical numbering scheme.
  - Identity elements, responsible for recognising cognate aaRS.



### Robust protein understanding

Use the pre-trained transformers to predict or design



[3] "ProtTrans: Toward Understanding the Language of Life Through Self-Supervised Learning." IEEE Transactions on Pattern Analysis and Machine Intelligence (2022).

[4] "Neural networks to learn protein sequence-function relationships from deep mutational scanning data." Proceedings of the National Academy of Sciences (2021).

[6] "ProSelfLC: Progressive Self Label Correction Towards A Low-Temperature Entropy State." Ours under peer review.

### Deep distance metric for Omics AI

1 Exploratory data analysis (EDA): data variances.

- Intraclass: remote homology/evolutionary information
- Interclass: how to discriminate biological molecules/sequences.

## Iterative active learning for the efficiency of time, data and labels



- Work and experience: a quick glance, more in the CV
- 2 Technical novelty and principle: Example weighting is universal
- Oeep distance metric learning
  - Deep distance metric: Definition & Overview
  - Deep distance metric: Vision applications
- Robust deep learning (scope: transparent and interpretable ML) Understanding real-world data and why do we need it
  - Learning objectives
  - Project: Robust video-based person ReID
  - Project: To uncover how a deep model learns under noise
- **5** Omics Al
  - Bioinformatics: Sequence alignment and distance
  - Robust protein understanding
  - Deep distance metric: EDA + Active Learning
- 6 Industrial R&D experience
  - Industrial R&D overview
  - Industrial AI Research = model-centric AI + data-centric AI =

### Industrial R&D overview

Focus: solve & productise real-world impactful problems

- Publication to share research is a plus and encouraged.
- Collaboratively build AI toolboxes, end-to-end AI service pipelines, etc.



Source: https://dida.do/blog/data-centric-machine-learning

25/29

### Industrial AI Research

 $\mathsf{Methods} = \mathsf{model}\mathsf{-centric} \ \mathsf{AI} + \mathsf{data}\mathsf{-centric} \ \mathsf{AI}$ 



AI System = Data + Model (Code)

#### Industrial AI Research Processes and management

- 1 Suggest research directions and write proposals to the board.
- 2 Lead research via task breakdown and an estimated/agreed timeline using Jira and Confluence.
- S Collaborate, control quality, and maintain conventions using github code peer review.

Thanks for your attention.

Questions and discussions are very welcome.

Research topics of Dr. (Amos) Xinshao Wang:

- Deep distance metric learning
- Robust deep learning
- Omics AI + Bioinformatics
- Active learning
- EDA + Visualisation

Homepage: https://xinshaoamoswang.github.io/about/ Blogs: https://xinshaoamoswang.github.io/blogs/ LinkedIn: https://www.linkedin.com/in/xinshaowang/ Github: https://github.com/XinshaoAmosWang Google Scholar: yOBhB7UAAAAJ

#### References

- Bileschi, M. L., Belanger, D., Bryant, D. H., Sanderson, T., Carter, B., Sculley, D., Bateman, A., DePristo, M. A., and Colwell, L. J. Using deep learning to annotate the protein universe. *Nature Biotechnology*, pp. 1–6, 2022.
- [2] Cervettini, D., Tang, S., Fried, S. D., Willis, J. C., Funke, L. F., Colwell, L. J., and Chin, J. W. Rapid discovery and evolution of orthogonal aminoacyl-trna synthetase-trna pairs. *Nature biotechnology*, pp. 989–999, 2020.
- [3] Elnaggar, A., Heinzinger, M., Dallago, C., Rehawi, G., Yu, W., Jones, L., Gibbs, T., Feher, T., Angerer, C., Steinegger, M., et al. ProtTrans: Toward understanding the language of life through self-supervised learning. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, pp. 7112–7112.
- [4] Gelman, S., Fahlberg, S. A., Heinzelman, P., Romero, P. A., and Gitter, A. Neural networks to learn protein sequencefunction relationships from deep mutational scanning data. Proceedings of the National Academy of Sciences, 2021.
- [5] Wang, X., Kodirov, E., Hua, Y., and Robertson, N. M. Derivative manipulation for general example weighting. arXiv preprint arXiv:1905.11233, 2019.
- [6] Wang, X., Hua, Y., Kodirov, E., Mukherjee, S. S., Clifton, D. A., and Robertson, N. M. Proselflc: Progressive self label correction towards a low-temperature entropy state. arXiv preprint arXiv:2207.00118, 2022.