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Outline
@ Work and experience: a quick glance, more in the CV
@ Technical novelty and principle: Example weighting is universal
© Deep distance metric learning
Deep distance metric: Definition & Overview
Deep distance metric: Vision applications
@ Robust deep learning (scope: transparent and interpretable ML)
Understanding real-world data and why do we need it
Learning objectives
Project: Robust video-based person RelD
@ Omics Al

Project: To uncover how a deep model learns under noise

Bioinformatics: Sequence alignment and distance
Robust protein understanding

Deep distance metric: EDA + Active Learning
@ Industrial R&D experience

Industrial R&D overview

Industrial Al Research = model-centric Al_+ data-centric Al

Dae
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Outline
@ Work and experience: a quick glance, more in the CV
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Work and experience (= 90% leading)

@ Deep distance metric learning
[ ]

® Robust deep learning, model calibration and uncertainties:
® A PhD student as the 1st author:

® Preprint (56 citations):

©® (Oxford) Postdoc, Visit Scholar on Al health care (e.g., ECG)

©® (Zenith Ai) Sr. Researcher on Omics Al (e.g., DNA, tRNA,
protein, amino acid, ribosome, molecule docking /
AlphaFold2 / biochemistry)
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https://arxiv.org/pdf/1903.03238.pdf
https://arxiv.org/pdf/1811.01459.pdf
https://openreview.net/forum?id=HHIFHJtJeGA
https://openreview.net/forum?id=HHIFHJtJeGA
https://arxiv.org/abs/2005.03788
https://arxiv.org/pdf/1903.12141.pdf
https://arxiv.org/pdf/1903.12141.pdf
https://arxiv.org/pdf/1903.12141.pdf
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Technical novelty and principle

Example weighting is universal in deep learning

We define our interpretation of example weighting [5]:

Definition (Example Weighting). In gradient-based optimi-
sation, the derivative of an example can be interpreted as its
effect on the update of a model. Therefore, a derivative’s
magnitude function equals to a weighting scheme.

Accordingly, a change of the derivative magnitude function, is
implicitly equivalent to, modifying an example weighting scheme.
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Outline
© Deep distance metric learning

Deep distance metric: Definition & Overview
Deep distance metric: Vision applications
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Deep distance metric: Overview
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Deep distance metric: Vision applications

® General-purpose image/video clustering / retrieval
® Body/Face image/video re-identification (i.e., retrieval)
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Outline

@ Robust deep learning (scope: transparent and interpretable ML)

Understanding real-world data and why do we need it
Learning objectives

Project: Robust video-based person RelD
Project: To uncover how a deep model learns under noise

Dae
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Why do we need robust deep learning?

Understanding the real-world data with adverse cases

This video is labelled as the person wearing green shirt.

11/29



Adverse cases in real-world data

Out-of-distribution anomalies: Know the unknown
@ The inputs contain only background: no semantic information.

® The labels do not belong to any class in the training set.

In-distribution anomalies: Detect => Ignore or Correct

@ Single-label noise: also common in annotating molecules

® Noisy annotations.
® Missing annotations.

® Multi-label noise: to be solved by multi-label training. E.g.,
one molecule may have multiple biological functions.
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Learning objectives of robust deep learning

What is the meaning of robustness here?

@ To learn meaningful patterns on semantically clean data.

® Without fitting errors/bias.
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©® Generalisation to unseen data.
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Generalise to the unseen (e.g., remote
homology)

Build train-validation datasets properly

L . test set
E . protein

.
trainset *,
proteins

[1] "Using deep learning to annotate the protein universe." Nature
Biotechnology (2022).
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Robust deep learning projects
Video-based person re-identification (RelD)
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Robust deep learning projects
Video-based person RelD

If the cost is expensive to improve the data quality, e.g., improving
super-resolution or detection in set/video-based person RelD,

Example weighting and robust deep learning can help!
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Robust deep learning projects

To uncover how a deep model learns under noise [6]

DNN has strong fitting capability, but we find:

Deep models easily fit random noise.

Deep networks learn simple semantic patterns before fitting
noise.

Modern deep neural works tend to be over-confident.

(Ours) Deep neural networks become less confident of learning
semantic patterns before fitting noise when the label noise
rises.
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Robust deep learning projects
To uncover how a deep model learns under noise [6]
1. To reward a low-entropy status other than penalise.
2. Model calibration.

—— Test: accu —— Clean subset: accu — Noisy subset: accu
—==- Test: confyy === Clean subset: conf,; === Noisy subset: conf
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(a) Standard CCE. (b) ProSelfLC with an AT (ours).

Figure: accu and conf,) along with the iteration when training ResNet18
on CIFAR-100. The symmetric noise rate is r = 40%.
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Outline

@ Omics Al

Bioinformatics: Sequence alignment and distance
Robust protein understanding

Deep distance metric: EDA + Active Learning
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Bioinformatics
Sequence alignment and distance
@ NGS Sequencing and sequence analysis
® With reference: Bowtie + Samtools
® No reference: overlap-based de novo assembly, then comparing
to known sequences using BLAST
@® Sequence alignment and distance calculation
® MMSeq?2
® Pfam domain database + HMMer-based distance

Contigs (overlapping regions)

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

There are 10142 sequences with the following y
W3ARES 9FIRM [Lachnospiraceae bacterium JC7] Gh RNA ligase [ECO:
(M RNA synit el e {Anticodon 2}

Show all sequences with this architecture.

1c, Anti 2
-Rule:MF_00022] (482 residues)

— There are 5438 sequences with the following i ynt_1c, ynt_lc_C
—— YOKIT4 9PROT bacterium 11] Gl RNA ligase {ECO: | -Rule-MF_00126} (588 residues)
| — (L RNA syt (RN Ay EAC)

Show all sequences with this architecture.

There are 3938 sequences with the following architecture: tRNA-synt_1c
W9RS03 9ROSA [Morus notabilis] Glutamyl-tRNA synthetase {ECH ARB/ 17458} (570 residues)
LR,

Assembled sequence
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Bioinformatics
Iterative set-based validation -> improve the algorithm/model
@ Biological wetlab annotation/validation: enrichment/pathway
analysis via Null-Hypothesis Statistical Test.
® tRNA distance calculation [2]

® Secondary structure and the canonical numbering scheme.
® |dentity elements, responsible for recognising cognate aaRS.
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Token-level
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[3] "ProtTrans: Toward Understanding the Language of Life Through Self-Supervised Learning." IEEE

Robust protein understanding

Use the pre-trained transformers to predict or design
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Transactions on Pattern Analysis and Machine Intelligence (2022).
[4] "Neural networks to learn protein sequence—function relationships from deep mutational scanning
data." Proceedings of the National Academy of Sciences (2021).
[6] "ProSelfLC: Progressive Self Label Correction Towards A Low-Temperature Entropy State." Ours
under peer review.

Predict scores for new variants

G177L, M189T ?
T159L ?

G177L, M189T | 0.003
T159L 0.388
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Deep distance metric for Omics Al

@ Exploratory data analysis (EDA): data variances.

® Intraclass: remote homology/evolutionary information
® Interclass: how to discriminate biological molecules/sequences.

@® lterative active learning for the efficiency of time, data and
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Outline

@ Industrial R&D experience

Industrial R&D overview

Industrial Al Research = model-centric Al_+ data-centric Al

Dae
24/29



Industrial R&D overview
Focus: solve & productise real-world impactful problems
e Publication to share research is a plus and encouraged

e Collaboratively build Al toolboxes, end-to-end Al service
pipelines, etc.

©
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Source: https://dida.do/blog/data-centric-machinez|earning


https://dida.do/assets/blog/20211006_dv_data-centric-ai/model_centric_ml.png

Industrial Al Research

Methods = model-centric Al + data-centric Al

Scope Deploy in
project product
e Data diversity, coverage, .

Model capacity, speed, memory
consumption, etc

Learning algorithms: e.g.,
ProSelfL.C, Derivative
Manipulation (DM), etc

imbalance, etc

Annotation quality, completeness 0
-> noisy or missing labels

Data

Model (Code)

Al System = Data + Model (Code)




Industrial Al Research

Processes and management

@ Suggest research directions and write proposals to the board.

@® Lead research via task breakdown and an estimated/agreed
timeline using Jira and Confluence.

© Collaborate, control quality, and maintain conventions using
github code peer review.
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Thanks for your attention.
Questions and discussions are very welcome.

Research topics of Dr. (Amos) Xinshao Wang:

® Deep distance metric learning

Robust deep learning

Omics Al + Bioinformatics

Active learning
e EDA + Visualisation
Homepage:
Blogs:
LinkedIn:

Github:
Google Scholar:
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