Dr. (Amos) Xinshao Wang: Data + Modelling
Vision and Endeavours: To Design and Build
Data/Label/Time-Efficient, Robustly Reliable and Transparent
AI for Diverse Applications (Omics/Biosequences, Healthcare, NLP, CV, etc).

Google Scholar: yOBhB7UAAAAJ Github: https://github.com/XinshaoAmosWang Homepage+Blogs: https://xinshaoamoswang.github.io/

Email: xinshaowang@gmail.com Phone: +44 (0) 7712 114316

2023-04-19 Wed, Invited Talk@Synteny

1 Self introduction

Overview

Work and experience

2 Technical novelty and principle: Example weighting is universal

3 Deep distance metric learning

Contribution: Structured learning on selected informative data

 Robust deep learning (scope: transparent and interpretable ML) Learning objectives

Contributions: an insightful finding and propose ProSelfLC

5 Omics Al

Cutting-edge OTS research: triplet design Bioinformatics: alignment-based distance and virtual screening Robust deep learning for protein modelling The key: collecting, curating, and leveraging the data

6 Industrial R&D experience Industrial R&D for real-world problems

1 Self introduction

Overview

Work and experience

- 2 Technical novelty and principle: Example weighting is universal
- 3 Deep distance metric learning

Contribution: Structured learning on selected informative data

 Robust deep learning (scope: transparent and interpretable ML) Learning objectives

Contributions: an insightful finding and propose ProSelfLC

5 Omics Al

Cutting-edge OTS research: triplet design

Bioinformatics: alignment-based distance and virtual screening

- Robust deep learning for protein modelling
- The key: collecting, curating, and leveraging the data
- 6 Industrial R&D experience
 - Industrial R&D for real-world problems
 - R&D leading experience

Self introduction: Overview

1 Self introduction

Overview

Work and experience

- 2 Technical novelty and principle: Example weighting is universal
- **3** Deep distance metric learning

Contribution: Structured learning on selected informative data

 Robust deep learning (scope: transparent and interpretable ML) Learning objectives

Contributions: an insightful finding and propose ProSelfLC

5 Omics Al

Cutting-edge OTS research: triplet design

Bioinformatics: alignment-based distance and virtual screening

- Robust deep learning for protein modelling
- The key: collecting, curating, and leveraging the data
- 6 Industrial R&D experience
 - Industrial R&D for real-world problems
 - R&D leading experience

Work and experience

1 Deep distance metric learning

- CVPR 2019 and TPAMI 2022
- AAAI 2019 Oral

2 Robust deep learning, model calibration and uncertainties:

- CVPR 2021
- Co-supervising a PhD student: Trustworthy and Socially Responsible ML Workshop, NeurIPS 2022
- Trustworthy and Reliable ML Workshop 2023, ICLR "IMAE for Noise-Robust Learning: Mean Absolute Error Does Not Treat Examples Equally and Gradient Magnitude's Variance Matters" (65 citations)
- 3 (Oxford) Postdoc, Visit Scholar on AI health care (e.g., ECG)
- (Zenith Ai) Sr. Researcher on Omics AI (e.g., DNA, tRNA, protein, amino acid, ribosome, structure-sequence-function)

Technical novelty and principle Example weighting is universal in deep learning

We define our interpretation of example weighting [6]:

Definition (Example Weighting). In gradient-based optimisation, the derivative of an example can be interpreted as its effect on the update of a model. Therefore, a derivative's magnitude function equals to a weighting scheme.

Accordingly, a change of the derivative magnitude function, is implicitly equivalent to, modifying an example weighting scheme.

Intuitive research motivations:

- (1) Not all training examples are created equal!
- (2) Sampling matters!

1 Self introduction

Overview

Work and experience

- 2 Technical novelty and principle: Example weighting is universal
- 3 Deep distance metric learning

Contribution: Structured learning on selected informative data

 Robust deep learning (scope: transparent and interpretable ML) Learning objectives

Contributions: an insightful finding and propose ProSelfLC

5 Omics Al

Cutting-edge OTS research: triplet design

- Bioinformatics: alignment-based distance and virtual screening
- Robust deep learning for protein modelling
- The key: collecting, curating, and leveraging the data
- 6 Industrial R&D experience
 - Industrial R&D for real-world problems
 - R&D leading experience

Structured learning on selected data CVPR 2019 and TPAMI 2022 [8]

1 Self introduction

Overview

Work and experience

2 Technical novelty and principle: Example weighting is universal

3 Deep distance metric learning

Contribution: Structured learning on selected informative data

 Robust deep learning (scope: transparent and interpretable ML) Learning objectives

Contributions: an insightful finding and propose ProSelfLC

5 Omics Al

Cutting-edge OTS research: triplet design

Bioinformatics: alignment-based distance and virtual screening

- Robust deep learning for protein modelling
- The key: collecting, curating, and leveraging the data
- 6 Industrial R&D experience

Industrial R&D for real-world problems

Learning objectives of robust deep learning What is the meaning of robustness here?

- 1 To learn meaningful patterns on semantically clean data.
- **2** Without fitting errors/bias.
- **3** Generalisation to unseen data.

Build training and testing datasets properly [1]. How about the validation dataset?

1 Self introduction

Overview

Work and experience

- 2 Technical novelty and principle: Example weighting is universal
- 3 Deep distance metric learning

Contribution: Structured learning on selected informative data

- A Robust deep learning (scope: transparent and interpretable ML) Learning objectives
 - Contributions: an insightful finding and propose ProSelfLC

5 Omics Al

Cutting-edge OTS research: triplet design

- Bioinformatics: alignment-based distance and virtual screening
- Robust deep learning for protein modelling
- The key: collecting, curating, and leveraging the data
- 6 Industrial R&D experience
 - Industrial R&D for real-world problems
 - R&D leading experience

Contribution: disclose the learning dynamics [7]

DNN has strong fitting capability, but we find:

Deep models easily fit random noise.

Deep networks learn simple semantic patterns before fitting noise.

Modern deep neural works tend to be over-confident.

(Ours: miscalibration under the noise) Deep neural networks become less confident of learning semantic patterns before fitting noise when the label noise rises. Contribution: propose the ProSelfLC to promote confident and accurate learning [7] 1. To reward a low-entropy status other than penalise. 2. To promote model calibration.

14/32

1 Self introduction

Overview

Work and experience

- 2 Technical novelty and principle: Example weighting is universal
- 3 Deep distance metric learning

Contribution: Structured learning on selected informative data

 Robust deep learning (scope: transparent and interpretable ML) Learning objectives

Contributions: an insightful finding and propose ProSelfLC

5 Omics Al

Cutting-edge OTS research: triplet design

Bioinformatics: alignment-based distance and virtual screening Robust deep learning for protein modelling

The key: collecting, curating, and leveraging the data

6 Industrial R&D experience

Industrial R&D for real-world problems

Cutting-edge OTS research: triplet design Orthogonal (aaRS, tRNA, ncAA)

With the conditions that

1 Self introduction

Overview

Work and experience

- 2 Technical novelty and principle: Example weighting is universal
- 3 Deep distance metric learning

Contribution: Structured learning on selected informative data

 Robust deep learning (scope: transparent and interpretable ML) Learning objectives

Contributions: an insightful finding and propose ProSelfLC

5 Omics Al

Cutting-edge OTS research: triplet design Bioinformatics: alignment-based distance and virtual screening Robust deep learning for protein modelling The key: collecting, curating, and leveraging the data

- The key: collecting, curating, and leveraging the data
- 6 Industrial R&D experience
 - Industrial R&D for real-world problems
 - R&D leading experience

Bioinformatics

Sequence alignment and distance metrics

1 Gene synthesis: seq. optimisation + overlap-based assembly

- **2** NGS data analysis (e.g., variants calling + expression analysis)
 - Alignment: Bowtie2/minimap2 + Samtools
 - Reads counting
- 3 Alignment-based distance metrics
 - MMSeq2
 - Pfam domain database + HMMer-based distance

Bioinformatics for virtual screening

Revisiting Neil's question on sequences from diverse organisms **1** tRNA distance calculation [2]

- Secondary structure and the canonical numbering scheme.
- Identity elements, responsible for recognising cognate aaRS.
- 2 Annotating/validating via wetlab experiments: differential gene expression analysis.

1 Self introduction

Overview

Work and experience

2 Technical novelty and principle: Example weighting is universal

3 Deep distance metric learning

Contribution: Structured learning on selected informative data

 Robust deep learning (scope: transparent and interpretable ML) Learning objectives

Contributions: an insightful finding and propose ProSelfLC

5 Omics Al

Cutting-edge OTS research: triplet design
Bioinformatics: alignment-based distance and virtual screening
Robust deep learning for protein modelling
The key: collecting, curating, and leveraging the data
Industrial R&D experience

Industrial R&D for real-world problems

Not-solved ideas: hierarchical objectives StructureMotif-Loop-Site: Sequence-Domain-Site

Mutational effect: single and co-mutation Active AI for selective/evolutionary screening Token-level н E classification Supervised CNN network Concatenate L amino acid 1024 1024 1024 1024 embeddinas mean(L) Poolina Last hidden layer Stack of N selfattention lavers Transformer model Protein Predict scores for new variants embedding G177L, M189T ? **Tokenization &** Supervised FNN T159L ? Encoding network G177L, M189T 0.003 Protein-level Input E Q S Nucleus of length L classification T159L 0.388

[3] "ProtTrans: Toward Understanding the Language of Life Through Self-Supervised Learning." IEEE Transactions on Pattern Analysis and Machine Intelligence (2022).

[4] "Neural networks to learn protein sequence-function relationships from deep mutational scanning data." Proceedings of the National Academy of Sciences (2021).

[7] "ProSelfLC: Progressive Self Label Correction Towards A Low-Temperature Entropy State." Ours under peer review.

23/32

Public/Proprietary data collection, curation Interpretative ML: backbone + functional loops/regions/sites

Domain visualisation of the same EC function:

QARS, Zebrafish
QARS, Human
QARS, Norway rat
QARS, House mouse
QARS, Chicken

UniProt's annotations versus model's predictions:

Α	Position(s)	Description				Grap	hical vi				Length			
	2 - 305	Methylenetetrahydrofolate dehydrogenase and cyclohydrolase									304			
	306 - 935	Formyltetrahydrofolate synthetase									630			
B EC:1.5.1.5: methylenetetrahydrofolate dehydrogenase (NADP+)														
	EC:3.5.4.9: meth	nenyltetrahydrofolate cyclohydrolase												
	EC:6.3.4.3: form	ate—tetrahydrofolate ligase												
			100	200	300	400	500	600	700	800	900			
				Amino acid index										
										(日) (目) (日) (日) (日) (日) (日) (日) (日) (日) (日) (日				

1 Self introduction

Overview

Work and experience

- 2 Technical novelty and principle: Example weighting is universal
- 3 Deep distance metric learning

Contribution: Structured learning on selected informative data

 Robust deep learning (scope: transparent and interpretable ML) Learning objectives

Contributions: an insightful finding and propose ProSelfLC

5 Omics Al

Cutting-edge OTS research: triplet design

Bioinformatics: alignment-based distance and virtual screening Robust deep learning for protein modelling

The key: collecting, curating, and leveraging the data

6 Industrial R&D experience

Industrial R&D for real-world problems

The key: collect and leverage the data

Data modelling pipelines based on alignment and similarity:

- Diversified datasets splitting: training, validation, testing
- <u>A NN classifier as a baseline</u> for the deep learning.

Data augmentation pipelines:

- Label propagation and transformation: A protein -> HMMScan -> domain annotations -> statistical association modelling -> EC/GO labels.
- Mutations in disordered regions have negligible effect, except for mutations to phenylalanine (P), tyrosine (T) and tryptophan (W), which promote order.

1 Self introduction

Overview

Work and experience

2 Technical novelty and principle: Example weighting is universal

3 Deep distance metric learning

Contribution: Structured learning on selected informative data

 Robust deep learning (scope: transparent and interpretable ML) Learning objectives

Contributions: an insightful finding and propose ProSelfLC

5 Omics Al

Cutting-edge OTS research: triplet design

Bioinformatics: alignment-based distance and virtual screening

Robust deep learning for protein modelling

The key: collecting, curating, and leveraging the data

6 Industrial R&D experience

Industrial R&D for real-world problems

Industrial R&D for real-world problems

 $\mathsf{Methods} = \mathsf{model}\mathsf{-centric} \ \mathsf{AI} + \mathsf{data}\mathsf{-centric} \ \mathsf{AI}$

- Implement SOTA solutions & productise them.
- Build modularised AI toolboxes, end-to-end AI service pipelines.

Source: https://dida.do/blog/data-centric-machine-learning

28/32

Data collection, curation, and pre-processing take \sim 95% of the effort, and are harder to automate.

1 Self introduction

Overview

Work and experience

2 Technical novelty and principle: Example weighting is universal

3 Deep distance metric learning

Contribution: Structured learning on selected informative data

 Robust deep learning (scope: transparent and interpretable ML) Learning objectives

Contributions: an insightful finding and propose ProSelfLC

5 Omics Al

Cutting-edge OTS research: triplet design

Bioinformatics: alignment-based distance and virtual screening

Robust deep learning for protein modelling

The key: collecting, curating, and leveraging the data

6 Industrial R&D experience

Industrial R&D for real-world problems

Industrial AI Research Processes and management

- Suggest research directions and write proposals to the board (CEO and CSO).
- Plan and Lead research, via task breakdown and an agreed completion timeline tracked by Jira and Confluence.
- Collaborate, control quality, and maintain conventions using the peer review process, for both code and documentation.

Thanks for your attention. Questions and discussions are very welcome.

Research topics and interests of Dr. (Amos) Xinshao Wang:

- Deep distance metric learning
- Robust deep learning
- Omics AI + Bioinformatics
- Active learning
- EDA + Data Visualisation

Google Scholar: yOBhB7UAAAAJ Github: https://github.com/XinshaoAmosWang Homepage+Blogs: https://xinshaoamoswang.github.io/

References

<ロト </p>

32/32

- Bileschi, M. L., Belanger, D., Bryant, D. H., Sanderson, T., Carter, B., Sculley, D., Bateman, A., DePristo, M. A., and Colwell, L. J. Using deep learning to annotate the protein universe. *Nature Biotechnology*, pp. 1–6, 2022.
- [2] Cervettini, D., Tang, S., Fried, S. D., Willis, J. C., Funke, L. F., Colwell, L. J., and Chin, J. W. Rapid discovery and evolution of orthogonal aminoacyl-trna synthetase-trna pairs. *Nature biotechnology*, pp. 989–999, 2020.
- [3] Elnaggar, A., Heinzinger, M., Dallago, C., Rehawi, G., Yu, W., Jones, L., Gibbs, T., Feher, T., Angerer, C., Steinegger, M., et al. ProtTrans: Toward understanding the language of life through self-supervised learning. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, pp. 7112–7112.
- [4] Gelman, S., Fahlberg, S. A., Heinzelman, P., Romero, P. A., and Gitter, A. Neural networks to learn protein sequencefunction relationships from deep mutational scanning data. Proceedings of the National Academy of Sciences, 2021.
- [5] Wang, J., Lisanza, S., Juergens, D., Tischer, D., Watson, J. L., Castro, K. M., Ragotte, R., Saragovi, A., Milles, L. F., Baek, M., et al. Scaffolding protein functional sites using deep learning. *Science*, pp. 387–394, 2022.
- [6] Wang, X., Kodirov, E., Hua, Y., and Robertson, N. M. Derivative manipulation for general example weighting. arXiv preprint arXiv:1905.11233, 2019.
- [7] Wang, X., Hua, Y., Kodirov, E., Mukherjee, S. S., Clifton, D. A., and Robertson, N. M. Proselflc: Progressive self label correction towards a low-temperature entropy state. arXiv preprint arXiv:2207.00118, 2022.
- [8] Wang, X., Hua, Y., Kodirov, E., and Robertson, N. Ranked list loss for deep metric learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 5414–5429, 2022.