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Self introduction: Overview
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Work and experience

@ Deep distance metric learning
[ ]
[ ]

® Robust deep learning, model calibration and uncertainties:

® Co-supervising a PhD student:

® Trustworthy and Reliable ML Workshop 2023, ICLR

(65 citations)
©® (Oxford) Postdoc, Visit Scholar on Al health care (e.g., ECG)

O (Zenith Ai) Sr. Researcher on Omics Al (e.g., DNA, tRNA,
protein, amino acid, ribosome, structure-sequence-function)
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Technical novelty and principle

Example weighting is universal in deep learning

We define our interpretation of example weighting [6]:

Definition (Example Weighting). In gradient-based optimi-
sation, the derivative of an example can be interpreted as its
effect on the update of a model. Therefore, a derivative's
magnitude function equals to a weighting scheme.

Accordingly, a change of the derivative magnitude function, is
implicitly equivalent to, modifying an example weighting scheme.

Intuitive research motivations:

(1) Not all training examples are created equal!
(2) Sampling matters!
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Outline

© Deep distance metric learning

Contribution: Structured learning on selected informative data
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Structured learning on selected data
CVPR 2019 and TPAMI 2022 []
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Outline

@ Robust deep learning (scope: transparent and interpretable ML)
Learning objectives
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Learning objectives of robust deep learning

What is the meaning of robustness here?

@ To learn meaningful patterns on semantically clean data.

® Without fitting errors/bias.
©® Generalisation to unseen data.

R . test set
O protein

train set * .,
proteins

How about the validation dataset?
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Outline

@ Robust deep learning (scope: transparent and interpretable ML)

Contributions: an insightful finding and propose ProSelfLC
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Contribution: disclose the learning
dynamics [7]

DNN has strong fitting capability, but we find:

Deep models easily fit random noise.

Deep networks learn simple semantic patterns before fitting
noise.

Modern deep neural works tend to be over-confident.

(Ours: miscalibration under the noise) Deep neural networks
become less confident of learning semantic patterns before fit-
ting noise when the label noise rises.
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Contribution: propose the ProSelfLC to

promote confident and accurate learning [7]
1. To reward a low-entropy status other than penalise.
2. To promote model calibration.

— Test: accu —— Clean subset: accu — Noisy subset: accu
—==- Test: confyy === Clean subset: conf,; === Noisy subset: conf
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(a) Standard training. (b) ProSelfLC with an AT (ours).

Figure: accu and conf,; when training ResNet18 on CIFAR-100. The
noise rate is r = 40%.
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@ Omics Al

Cutting-edge OTS research: triplet design
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Cutting-edge OTS research: triplet design
Orthogonal (aaRS, tRNA, ncAA)

With the conditions that

|
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Natural
amino acid

Cutting-edge OTS research: triplet design

Orthogonal (aaRS, tRNA, ncAA)

Unnatural

amino acid
% Endogenous
tRNA
Endogenous

synthetase

AMP + PPi

Orthogonal

Orthogonal
synthetase

= MRNA
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@ Omics Al

Bioinformatics: alignment-based distance and virtual screening
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Bioinformatics
Sequence alignment and distance metrics
@ Gene synthesis: seq. optimisation + overlap-based assembly
® NGS data analysis (e.g., variants calling + expression analysis)
® Alignment: Bowtie2/minimap2 + Samtools
® Reads counting
© Alignment-based distance metrics
® MMSeq?2
® Pfam domain database + HMMer-based distance

Contigs (overlapping regions)

Reads cluster 1 l Reads cluster 2 l, Reads cluster 3

Domain organisation

Below i a listing of the unique domain organisations or architectures in which this domain is found. More...

There are 10142 sequences with the following ynt_1c, Anti 2
WB3ARES SFIRM [Lachnospiraceae bacterium JC7] Gl RNA ligase {ECO: -Rule:MF_00022] (482 residues)

(S RNA syl e {Anticodons2).

Show all sequences with this architecture.

There are 5438 sequences with the following ynt_1c, ynt_1c_C

YOKIT4 9PROT bacterium 11] Gii RNA ligase {ECO-! | -Rule:MF_00126} (588 residues)
RN A syt C G (IRNASSYRISIEAG)

‘Show all sequences with this architecture.

Assambied sequence There are 3938 sequences with the following architecture: tRNA-synt_lc
W9RSB03 9ROSA [Morus notabilis] Gl /RNA synthetase {ECO! RE» 17458} (570 residues)

RN
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Bioinformatics for virtual screening
Revisiting Neil's question on sequences from diverse organisms
® tRNA distance calculation [2]
® Secondary structure and the canonical numbering scheme.
® |dentity elements, responsible for recognising cognate aaRS.
® Annotating/validating via wetlab experiments: differential
gene expression analysis.

E. coliaaRS
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Outline

@ Omics Al

Robust deep learning for protein modelling
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Not-solved ideas: hierarchical objectives
StructureMotif-Loop-Site; Seauence-Domain-Site
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[5] "Scaffolding protein functional sites St':jé?jrle Csot?;zltitreed
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Mutational effect: single and co-mutation

Act|ve Al for selective/evolutionary screening
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[3] "ProtTrans: Toward Understanding the Language of Life Through Self-Supervised Learning." IEEE

Transactions on Pattern Analysis and Machine Intelligence (2022).

Predict scores for new variants

G177L, M189T ?
T159L ?

G177L, M189T | 0.003
T159L 0.388

[4] "Neural networks to learn protein sequence—function relationships from deep mutational scanning

data." Proceedings of the National Academy of Sciences (2021).

[7] "ProSelfLC: Progressive Self Label Correction Towards A Low-Temperature Entropy State." Ours

under peer review.
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Public/Proprietary data collection, curation

Interpretative ML: backbone + functional loops/regions/sites

Domain visualisation of the same EC function:
=» QARS, Zebrafish
mQARS, Human

-_—me @0 e
[T )
I QARS, Norway rat -
B QARS, House mouse aps @ =
W QARS, Chicken ame =

UniProt’s annotations versus model’s predictions:

2 - 305 Methylenetetrahydrofolate dehydrogenase and cyclohydrolase [ 304
306 - 935 Formyltetrahydrofolate synthetase ] 630
B EC1.51.5: methyler det (NADP*)
EC:3.5.4.9: metheny cyclot

EC:6.3.4.3: formate—tetrahydrofolate ligase
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Amino acid index
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Outline

@ Omics Al

The key: collecting, curating, and leveraging the data
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The key: collect and leverage the data

Data modelling pipelines based on alignment and similarity:
® Diversified datasets splitting: training, validation, testing

® A NN classifier as a baseline for the deep learning.

Data augmentation pipelines:

e Label propagation and transformation: A protein ->
HMMScan -> domain annotations -> statistical association
modelling -> EC/GO labels.

e Mutations in disordered regions have negligible effect, except

for mutations to phenylalanine (P), tyrosine (T) and
tryptophan (W), which promote order.
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Outline

@ Industrial R&D experience

Industrial R&D for real-world problems
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Industrial R&D for real-world problems

pipelines

Methods = model-centric Al + data-centric Al
e |mplement SOTA solutions & productise them
® Build modularised Al toolboxes, end-to-end Al service

@)
Training
S -

Data

0
I l l Evaluanon
- Modelmg - @
v Bmd 94 ocvloymen
Collection Processing unj]ﬂ Hyperparameter
Evaluation @ Tuning
Training
o
nalll
Evaluation

Source: https://dida.do/blog/data-centric-machine-learning

Data collection, curation, and pre-processing take ~95% of the
effort, and are harder to automate

[m]

=
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https://dida.do/assets/blog/20211006_dv_data-centric-ai/model_centric_ml.png

Outline

@ Industrial R&D experience

R&D leading experience
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Industrial Al Research

Processes and management

@ Suggest research directions and write proposals to the board
(CEO and CSO).

® Plan and Lead research, via task breakdown and an agreed
completion timeline tracked by Jira and Confluence.

© Collaborate, control quality, and maintain conventions using
the peer review process, for both code and documentation.
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Thanks for your attention.
Questions and discussions are very welcome.

Research topics and interests of Dr. (Amos) Xinshao Wang:

® Deep distance metric learning

Robust deep learning

Omics Al + Bioinformatics

Active learning
EDA + Data Visualisation

Google Scholar:
Github:
Homepage+Blogs:
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