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Self introduction: Overview
* PhD study at QUB ended
* Postdoc offer from  Oxford 
University

* Papers: AAAI Oral, 2 CVPRs, 
TPAMI

* Reviewers: CVPR, ICCV, AAAI, 
NeurIPS, TPAMI, TNNLS, 
Knowledge Based Systems

2013

* B.Eng. at  NWAFU ended
* Master offer from  PKU
* PhD offer from CUHK
* PhD offer from QUB and 
Anyvision

China 
National 
Scholarship 
×3

APSIPA 2015 
Oral

2017

2020-06

Intern at YouTu 
Lab, Tencent

Hawaii

2020-12

*  A senior ML 
Research Scientist at 
Zenith Ai, UK

* A founding technical 
member at Zenith Ai

AI for health care

* Acquired by 
Opentrons, a Unicorn

* Working on Omics AI

* Visit Scholar at Oxford 
University

* Papers: 
  - TSRML Workshop of 
NeurIPS, 2022, 
  - NeurIPS, 2022 Global 

Talent visa, 
by Royal 

Academy of 
Engineering

B.Eng. PhD PostDoc Industrial Research
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Work and experience

1 Deep distance metric learning
• CVPR 2019 and TPAMI 2022
• AAAI 2019 Oral

2 Robust deep learning, model calibration and uncertainties:
• CVPR 2021
• Co-supervising a PhD student: Trustworthy and Socially

Responsible ML Workshop, NeurIPS 2022
• Trustworthy and Reliable ML Workshop 2023, ICLR “IMAE for

Noise-Robust Learning: Mean Absolute Error Does Not Treat
Examples Equally and Gradient Magnitude’s Variance Matters”
(65 citations)

3 (Oxford) Postdoc, Visit Scholar on AI health care (e.g., ECG)
4 (Zenith Ai) Sr. Researcher on Omics AI (e.g., DNA, tRNA,

protein, amino acid, ribosome, structure-sequence-function)
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Technical novelty and principle
Example weighting is universal in deep learning

We define our interpretation of example weighting [6]:

Definition (Example Weighting). In gradient-based optimi-
sation, the derivative of an example can be interpreted as its
effect on the update of a model. Therefore, a derivative’s
magnitude function equals to a weighting scheme.

Accordingly, a change of the derivative magnitude function, is
implicitly equivalent to, modifying an example weighting scheme.

Intuitive research motivations:
(1) Not all training examples are created equal!
(2) Sampling matters!
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Structured learning on selected data
CVPR 2019 and TPAMI 2022 [8]

Deep 
distance 
metric

learning

Supervised

Self-supervised

Open-set

Closed-set
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Learning objectives of robust deep learning
What is the meaning of robustness here?

1 To learn meaningful patterns on semantically clean data.
2 Without fitting errors/bias.
3 Generalisation to unseen data.

Build training and testing datasets properly [1].
How about the validation dataset?
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Contribution: disclose the learning
dynamics [7]

DNN has strong fitting capability, but we find :

Deep models easily fit random noise.

Deep networks learn simple semantic patterns before fitting
noise.

Modern deep neural works tend to be over-confident.

(Ours: miscalibration under the noise) Deep neural networks
become less confident of learning semantic patterns before fit-
ting noise when the label noise rises.
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Contribution: propose the ProSelfLC to
promote confident and accurate learning [7]

1. To reward a low-entropy status other than penalise.
2. To promote model calibration.
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(a) Standard training.
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(b) ProSelfLC with an AT (ours).

Figure: accu and confall when training ResNet18 on CIFAR-100. The
noise rate is r = 40%.
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Cutting-edge OTS research: triplet design
Orthogonal (aaRS, tRNA, ncAA)
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Cutting-edge OTS research: triplet design
Orthogonal (aaRS, tRNA, ncAA)
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Bioinformatics
Sequence alignment and distance metrics

1 Gene synthesis: seq. optimisation + overlap-based assembly
2 NGS data analysis (e.g., variants calling + expression analysis)

• Alignment: Bowtie2/minimap2 + Samtools
• Reads counting

3 Alignment-based distance metrics
• MMSeq2
• Pfam domain database + HMMer-based distance
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Bioinformatics for virtual screening
Revisiting Neil’s question on sequences from diverse organisms

1 tRNA distance calculation [2]
• Secondary structure and the canonical numbering scheme.
• Identity elements, responsible for recognising cognate aaRS.

2 Annotating/validating via wetlab experiments: differential
gene expression analysis.
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Not-solved ideas: hierarchical objectives
StructureMotif-Loop-Site; Sequence-Domain-Site

structure in a masked region of protein
(Fig. 1C; materials and methods). Here, the
design challenge is formulated as an infor-
mation recovery problem, analogous to the
completion of a sentence given its first few
words using language models (17) or the
completion of corrupted images using in-
painting (18). A wide variety of protein struc-
ture prediction and design challenges can be
similarly formulated as missing information
recovery problems (Fig. 1D). Although protein
inpainting has been explored before (19, 20),
in this studywe approach it using the power of
a pretrained structure-prediction network.
We began from a RoseTTAFold (RF) mod-

el trained for structure prediction (16) and

carried out further training on fixed-backbone
sequence design in addition to the standard
fixed-sequence structure prediction task to
avoid model degradation (fig. S3; materials
and methods). This model, denoted RFimplicit,
was able to recover small, contiguous regions
missing both sequence and structure (fig. S3).
Encouraged by this result, we trained a model
explicitly on inpainting segmentswithmissing
sequence and structure given the surrounding
protein context, in addition to sequence design
and structure prediction tasks (fig. S4A; mate-
rials and methods and algorithm S1). The re-
sulting model was able to inpaint missing
regions with high fidelity (Fig. 1E and fig. S4)
and performed well at sequence design (32%

native sequence recovery during training) and
structure prediction (fig. S4C). We call this net-
work RFjoint and use it to generate all inpainted
designs below unless otherwise noted.
To evaluate in silico the quality of designs

generated by ourmethods,weuse theAlphaFold
(AF) protein structure prediction network (21),
which has high accuracy on de novo designed
proteins (22) (fig. S7A). RF and AF have dif-
ferent architectures and were trained inde-
pendently, and hence AF predictions can be
regarded as a partially orthogonal in silico test
of whether RF-designed sequences fold into
the intended structures, analogous to tradi-
tional ab initio folding (13, 23). We used AF
to compare the ability of hallucination and

Wang et al., Science 377, 387–394 (2022) 22 July 2022 2 of 8

Fig. 1. Methods for protein function design.
(A) Applications of functional-site scaffolding.
(B and C) Design methods. (B) Constrained
hallucination. At each iteration, a sequence is
passed to the trRosetta or RoseTTAFold neural
network, which predicts 3D coordinates and
inter-residue distances and orientations (fig. S2).
The predictions are scored by a loss function
that rewards certainty of the predicted structure
along with motif recapitulation and other task-
specific functions. MCMC, Markov chain Monte Carlo.
(C) Missing information recovery (“inpainting”).
Partial sequence and/or structural information is
input into a modified RoseTTAFold network (called
RFjoint), and complete sequence and structure are
output. (D) Protein design challenges formulated as
missing information recovery problems. Question
marks in column 1 indicate missing sequence
information; gray cartoons in column 2, missing
structural information. (E) RFjoint can simultaneously
recover structure and sequence of a masked protein
region. 2KL8 was fed into RFjoint with a continuous
(length 30) window of sequence and structure
masked out, with the network tasked with predicting
the missing region of protein. Outputs (inpainted
region in gray) closely resemble the original protein
(2KL8, left) and are confidently predicted by
AlphaFold (pLDDT/motif RMSD of models shown,
from left to right: 91.6/0.91, 92.0/0.69, and 90.4/
0.82). (F and G) Motif scaffolding benchmarking
data comparing RFjoint with constrained hallucina-
tion. A set of 28 de novo designed proteins,
published since RoseTTAFold was trained, were
used. For each protein, 20 random masks of length
30 were generated, and RFjoint and hallucination were
tasked with filling in the missing sequence and
structure to “scaffold” the unmasked “motif.” For
this mask length, RFjoint typically modestly outper-
forms hallucination, both in terms of the RMSD of
the unmasked protein (the “motif”) to the original
structure (F) and in AlphaFold confidence (pLDDT
in the replaced region) (G). Circles represent
average of 20 outputs for each of the bench-
marking proteins. Triangle represents 2KL8. Colors
in all panels: native functional motif, orange;

hallucinated/inpainted scaffold, gray; constrained motif, purple; binding partner, blue; nonmasked region, green; and masked region, light-gray dotted lines.
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structure in a masked region of protein
(Fig. 1C; materials and methods). Here, the
design challenge is formulated as an infor-
mation recovery problem, analogous to the
completion of a sentence given its first few
words using language models (17) or the
completion of corrupted images using in-
painting (18). A wide variety of protein struc-
ture prediction and design challenges can be
similarly formulated as missing information
recovery problems (Fig. 1D). Although protein
inpainting has been explored before (19, 20),
in this studywe approach it using the power of
a pretrained structure-prediction network.
We began from a RoseTTAFold (RF) mod-

el trained for structure prediction (16) and

carried out further training on fixed-backbone
sequence design in addition to the standard
fixed-sequence structure prediction task to
avoid model degradation (fig. S3; materials
and methods). This model, denoted RFimplicit,
was able to recover small, contiguous regions
missing both sequence and structure (fig. S3).
Encouraged by this result, we trained a model
explicitly on inpainting segmentswithmissing
sequence and structure given the surrounding
protein context, in addition to sequence design
and structure prediction tasks (fig. S4A; mate-
rials and methods and algorithm S1). The re-
sulting model was able to inpaint missing
regions with high fidelity (Fig. 1E and fig. S4)
and performed well at sequence design (32%

native sequence recovery during training) and
structure prediction (fig. S4C). We call this net-
work RFjoint and use it to generate all inpainted
designs below unless otherwise noted.
To evaluate in silico the quality of designs

generated by ourmethods,weuse theAlphaFold
(AF) protein structure prediction network (21),
which has high accuracy on de novo designed
proteins (22) (fig. S7A). RF and AF have dif-
ferent architectures and were trained inde-
pendently, and hence AF predictions can be
regarded as a partially orthogonal in silico test
of whether RF-designed sequences fold into
the intended structures, analogous to tradi-
tional ab initio folding (13, 23). We used AF
to compare the ability of hallucination and
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Fig. 1. Methods for protein function design.
(A) Applications of functional-site scaffolding.
(B and C) Design methods. (B) Constrained
hallucination. At each iteration, a sequence is
passed to the trRosetta or RoseTTAFold neural
network, which predicts 3D coordinates and
inter-residue distances and orientations (fig. S2).
The predictions are scored by a loss function
that rewards certainty of the predicted structure
along with motif recapitulation and other task-
specific functions. MCMC, Markov chain Monte Carlo.
(C) Missing information recovery (“inpainting”).
Partial sequence and/or structural information is
input into a modified RoseTTAFold network (called
RFjoint), and complete sequence and structure are
output. (D) Protein design challenges formulated as
missing information recovery problems. Question
marks in column 1 indicate missing sequence
information; gray cartoons in column 2, missing
structural information. (E) RFjoint can simultaneously
recover structure and sequence of a masked protein
region. 2KL8 was fed into RFjoint with a continuous
(length 30) window of sequence and structure
masked out, with the network tasked with predicting
the missing region of protein. Outputs (inpainted
region in gray) closely resemble the original protein
(2KL8, left) and are confidently predicted by
AlphaFold (pLDDT/motif RMSD of models shown,
from left to right: 91.6/0.91, 92.0/0.69, and 90.4/
0.82). (F and G) Motif scaffolding benchmarking
data comparing RFjoint with constrained hallucina-
tion. A set of 28 de novo designed proteins,
published since RoseTTAFold was trained, were
used. For each protein, 20 random masks of length
30 were generated, and RFjoint and hallucination were
tasked with filling in the missing sequence and
structure to “scaffold” the unmasked “motif.” For
this mask length, RFjoint typically modestly outper-
forms hallucination, both in terms of the RMSD of
the unmasked protein (the “motif”) to the original
structure (F) and in AlphaFold confidence (pLDDT
in the replaced region) (G). Circles represent
average of 20 outputs for each of the bench-
marking proteins. Triangle represents 2KL8. Colors
in all panels: native functional motif, orange;

hallucinated/inpainted scaffold, gray; constrained motif, purple; binding partner, blue; nonmasked region, green; and masked region, light-gray dotted lines.
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structure in a masked region of protein
(Fig. 1C; materials and methods). Here, the
design challenge is formulated as an infor-
mation recovery problem, analogous to the
completion of a sentence given its first few
words using language models (17) or the
completion of corrupted images using in-
painting (18). A wide variety of protein struc-
ture prediction and design challenges can be
similarly formulated as missing information
recovery problems (Fig. 1D). Although protein
inpainting has been explored before (19, 20),
in this studywe approach it using the power of
a pretrained structure-prediction network.
We began from a RoseTTAFold (RF) mod-

el trained for structure prediction (16) and

carried out further training on fixed-backbone
sequence design in addition to the standard
fixed-sequence structure prediction task to
avoid model degradation (fig. S3; materials
and methods). This model, denoted RFimplicit,
was able to recover small, contiguous regions
missing both sequence and structure (fig. S3).
Encouraged by this result, we trained a model
explicitly on inpainting segmentswithmissing
sequence and structure given the surrounding
protein context, in addition to sequence design
and structure prediction tasks (fig. S4A; mate-
rials and methods and algorithm S1). The re-
sulting model was able to inpaint missing
regions with high fidelity (Fig. 1E and fig. S4)
and performed well at sequence design (32%

native sequence recovery during training) and
structure prediction (fig. S4C). We call this net-
work RFjoint and use it to generate all inpainted
designs below unless otherwise noted.
To evaluate in silico the quality of designs

generated by ourmethods,weuse theAlphaFold
(AF) protein structure prediction network (21),
which has high accuracy on de novo designed
proteins (22) (fig. S7A). RF and AF have dif-
ferent architectures and were trained inde-
pendently, and hence AF predictions can be
regarded as a partially orthogonal in silico test
of whether RF-designed sequences fold into
the intended structures, analogous to tradi-
tional ab initio folding (13, 23). We used AF
to compare the ability of hallucination and
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Fig. 1. Methods for protein function design.
(A) Applications of functional-site scaffolding.
(B and C) Design methods. (B) Constrained
hallucination. At each iteration, a sequence is
passed to the trRosetta or RoseTTAFold neural
network, which predicts 3D coordinates and
inter-residue distances and orientations (fig. S2).
The predictions are scored by a loss function
that rewards certainty of the predicted structure
along with motif recapitulation and other task-
specific functions. MCMC, Markov chain Monte Carlo.
(C) Missing information recovery (“inpainting”).
Partial sequence and/or structural information is
input into a modified RoseTTAFold network (called
RFjoint), and complete sequence and structure are
output. (D) Protein design challenges formulated as
missing information recovery problems. Question
marks in column 1 indicate missing sequence
information; gray cartoons in column 2, missing
structural information. (E) RFjoint can simultaneously
recover structure and sequence of a masked protein
region. 2KL8 was fed into RFjoint with a continuous
(length 30) window of sequence and structure
masked out, with the network tasked with predicting
the missing region of protein. Outputs (inpainted
region in gray) closely resemble the original protein
(2KL8, left) and are confidently predicted by
AlphaFold (pLDDT/motif RMSD of models shown,
from left to right: 91.6/0.91, 92.0/0.69, and 90.4/
0.82). (F and G) Motif scaffolding benchmarking
data comparing RFjoint with constrained hallucina-
tion. A set of 28 de novo designed proteins,
published since RoseTTAFold was trained, were
used. For each protein, 20 random masks of length
30 were generated, and RFjoint and hallucination were
tasked with filling in the missing sequence and
structure to “scaffold” the unmasked “motif.” For
this mask length, RFjoint typically modestly outper-
forms hallucination, both in terms of the RMSD of
the unmasked protein (the “motif”) to the original
structure (F) and in AlphaFold confidence (pLDDT
in the replaced region) (G). Circles represent
average of 20 outputs for each of the bench-
marking proteins. Triangle represents 2KL8. Colors
in all panels: native functional motif, orange;

hallucinated/inpainted scaffold, gray; constrained motif, purple; binding partner, blue; nonmasked region, green; and masked region, light-gray dotted lines.

Active Sites
Epitope

Presentation
Viral Receptor

Traps
Protein-Protein

Interactions
A

B

MCMC or
gradient
update

Loss function
- Hallucination
- Motif
- Problem-specific

Sequence Predicted
Structure

Final
Design

Desired
Motif

C
Partial

Sequence

Partial
Structure

Completed
Structure

Completed
Sequence

D Partial information Design task

Loop design

Sequence
design

Structure
prediction

Functional
site design

2KL8 InpaintsE

F

G

Method 1: Hallucination Method 2: Inpainting

Neural network
RFjoint

L8 Inpaintsp

F

G

RESEARCH | RESEARCH ARTICLE

D
ow

nloaded from
 https://w

w
w

.science.org at U
niversity of W

ashington on July 21, 2022

[5] "Scaffolding protein functional sites
using deep learning" Science (2022).
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Mutational effect: single and co-mutation
Active AI for selective/evolutionary screening

projecting the high-dimensional representations down to
two dimensions (2D) using t-SNE [39]. Toward this end, we
took annotations from several sources. First, a non-redun-
dant (PIDE<40%) version of the SCOPe database [40]
(release 2.07 with 14,323 proteins). Second, we mapped pro-
teins into the three major domains of life (archaea, bacteria, or
eukarya) or to viruses (removing all proteins with missing
classifications). The number of iterations for the t-SNE pro-
jections was set to 3,000 and the perplexity to 30 for all plots
with the exception of the amino acid plot for which we used
a perplexity of 5. All visualizations used the same random
seed (42).

2.3 Data for Supervised Training

We also assessed the information captured during self-
supervised pre-training of our protein LMs by using
embeddings extracted from those models as sole input for
supervised training. Although we mostly relied on previ-
ously published data sets to ease comparisons to other
methods, for the supervised training, we also added a novel
test set to refine the evaluation.

Per-Residue Prediction /Single Tokens. To predict properties
of single tokens (here: single amino acids, dubbed residues
when joined in proteins), we used the training set published
with NetSurfP-2.0 [15] describing secondary structure in 3-
and 8-states (class distribution for all data sets in SOM
Tables 4, 3, available online). We also included other public
test data sets, namely CB513 [41]), TS115 [42], and CASP12
[43]. Each of those has severe limitations (CASP12: too
small, CB513 and TS115 redundant and outdated). There-
fore, we added a new test set using only proteins published

after the release of NetSurfP-2.0 (after Jan 1, 2019). We
included proteins from the PDB [44] with resolutions � 2:5
A
�
and � 20 residues. MMSeqs2 [45] with highest sensitivity

(-s 7.5) removed proteins with >20% PIDE to either the
training set or to itself. On top, PISCES [46] removed any
protein considered by its procedure to have >20% PIDE.
These filters reduced the number of new proteins (chains)
from 18k to 364 (dubbed set NEW364).

Per-Protein Prediction/Embedding Pooling. For the predic-
tion of features for entire proteins (analogous to the classifi-
cation of whole sentences in NLP), the DeepLoc [16] data
set was used to classify proteins into (i) membrane-bound
versus water-soluble and (ii) ten classes of subcellular local-
ization (also referred to as cellular compartments).

2.4 Step 1: Self-Supervised Protein LM Pre-Training

We trained six successful LMs in NLP (T5 [47], Electra [48],
BERT [49], Albert [50], Transformer-XL [51] and XLNet [11])
on protein sequences. BERT was the first bidirectional
model in NLP which tried to reconstruct corrupted tokens,
and is considered the de-facto standard for transfer learning
in NLP. Albert reduced BERT’s complexity by hard parame-
ter sharing between its attention layers which allows to
increase the number of attention heads (64 chosen here).
Electra tries to improve the sampling-efficiency of the pre-
training task by training two networks, a generator and a
discriminator. Instead of only reconstructing corrupted
input tokens, the generator (BERT) reconstructs masked
tokens, potentially creating plausible alternatives, and the
discriminator (Electra) detects which tokens were masked.
This enriches the training signal as the loss can be computed
over all tokens instead of the subset of corrupted tokens
(usually only 15 percent). T5 uses the original transformer
architecture proposed for sequence translation, which con-
sists of an encoder that projects a source language to an
embedding space and a decoder that generates a translation
to a target language based on the encoder’s embedding.
Only later, models used either the encoder (BERT, Albert,
Electra) or the decoder (TransformerXL, XLNet), but T5
showed that this simplification might come at a certain price
as it reaches state-of-the-art results in multiple NLP bench-
marks. Additionally, it provides the flexibility to apply dif-
ferent training methodologies and different masking
strategies, e.g., T5 allows to reconstruct spans of tokens
instead of single tokens.

As self-attention is a set-operation and thus order-inde-
pendent, Transformers require explicit positional encoding.
Models trained with sinusoidal position signal like BERT,
Albert or Electra, can process only sequences shorter or
equal to the length of the positional encoding which has to
be set before training. Due to the huge memory requirement
of Transformer-models, this parameter is usually set to a
value lower than the longest proteins, e.g., Titin with 33k
residues. Here, we trained models that were affected by this
limitations (ProtBERT, ProtAlbert, ProtElectra) first on pro-
teins of length � 512, then on proteins � 1024. Only setting
the length of the positional encoding to 40k after pre-train-
ing allowed the models to process protein sequences up to a
length of 40k. In contrast to this, TransformerXL introduced
a memory that allows it to process sequences of arbitrary

Fig. 1. Feature extraction overview - We give a general overview on how
ProtTrans models can be used to derive features (embeddings) for arbi-
trary protein sequences either on the level of single amino acids or whole
proteins and how they can be used for classification tasks on both levels.
First, an example protein sequence ”SEQ” is tokenized and positional
encoding is added. The resulting vectors are passed through any of our
ProtTrans models to create context-aware embeddings for each input
token, i.e., each amino acid. Here, we used the last hidden state of the
Transformer’s attention stack as input for downstream prediction meth-
ods. Those embeddings can either be used directly as input for predic-
tion tasks on the level of individual tokens, e.g., a CNN can be used to
predict an amino acid’s secondary structure. Alternatively, those embed-
dings can be concatenated and pooled along the length-dimension to
get fixed-size embedding irrespective of the input length, i.e., global
average pooling is applied. The resulting protein-level embedding can
be used as input for predicting aspects of proteins, e.g., a FNN can be
used to predict a protein’s cellular localization.

7114 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 10, OCTOBER 2022

[3] "ProtTrans: Toward Understanding the Language of Life Through Self-Supervised Learning." IEEE
Transactions on Pattern Analysis and Machine Intelligence (2022).
[4] "Neural networks to learn protein sequence–function relationships from deep mutational scanning
data." Proceedings of the National Academy of Sciences (2021).
[7] "ProSelfLC: Progressive Self Label Correction Towards A Low-Temperature Entropy State." Ours
under peer review.
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Public/Proprietary data collection, curation
Interpretative ML: backbone + functional loops/regions/sites

Domain visualisation of the same EC function:

UniProt’s annotations versus model’s predictions:

Fig. 4. Linking sequence regions to function with class activation mapping for C-1-tetrahydrofolate synthase (accession P11586). A. Ground truth annotation of
function on Uniprot (2). B. The three horizontal bars are the sequence region ProteInfer predicts are most involved in each corresponding reaction. This concurs with the
known function localization.

(0.963) (Fig. 3A). For all classes, the precision of the network
was higher than the recall at the threshold maximising Fmax.
Precision and recall can be traded off against each other by
adjusting the confidence threshold at which the network out-
puts a prediction, creating the curves shown in Fig. 3B.
BLASTp is arguably a practitioner’s default choice for func-
tional annotation, so we implemented an alignment-based
baseline in which BLASTp is used to identify the closest se-
quence to a query sequence in the train set. Labels are then
imputed for the query sequence by transferring those labels
that apply to the annotated match from the train set.
We produced a precision-recall curve by using the bit score of
the closest sequence as a measure of confidence, varying the
cutoff above which we retain the imputed labels (63, 67). We
also considered an ensemble of neural networks (49), where
the average of the ensemble elements’ predicted probabilities
is used as a confidence score. (See Fig. S7, Fig. S8.)
We found that BLASTp was able to achieve higher recall val-
ues than ProteInfer for lower precision values, while Prote-
Infer was able to provide greater precision than BLASTp at
lower recall values. We wondered whether a combination of
ProteInfer and BLASTp could synergize the best properties
of both approaches. We found that even the simple ensem-
bling strategy of rescaling the BLAST bit score by the av-
erages of the ensembled CNNs’ predicted probabilities gave
a Fmax score (0.991, 95% confidence interval [CI]: 0.990–
0.992 ) that exceeded that of BLAST (0.984, 95% CI: 0.983–
0.985) or the ensembled CNN (0.981, 95% CI: 0.980–0.982)
alone. On the clustered train-test split based on UniRef50
(see clustered in Fig. 3B), we see a performance drop in all
methods: this is expected, as remote homology tasks are
designed to challenge methods to generalize farther in se-
quence space. The Fmax score of a single neural network
fell to 0.914 (95% CI: 0.913–0.915, precision: 0.959 recall:
0.875), substantially lower than BLAST (0.950, 95% CI:
0.950–0.951), though again an ensemble of both BLAST and
ProteInfer outperformed both (0.979, 95% CI: 0.979–0.980).
We find that neural network methods learn different infor-
mation about proteins than alignment-based methods, and a

combination of the two further improves remote homology
detection.
We also examined the relationship between the number of
examples of a label in the training dataset and the perfor-
mance of the model. In an image recognition task, this is
an important consideration since one image of, say, a dog,
can be utterly different to another. Large numbers of labels
are therefore required to learn filters that are able to predict
members of a class. In contrast, for sequence data we found
that even for labels that occurred less than five times in the
training set, 58% of examples in the test set were correctly
recalled, while achieving a precision of 88%, for an F1 of
0.7 (Fig. S9). High levels of performance are maintained
with few training examples because of the evolutionary rela-
tionship between sequences, which means that one ortholog
of a gene may be similar in sequence to another. The sim-
ple BLAST implementation described above also performs
well, and better than a single neural network, likely again ex-
ploiting the fact that many sequence have close neighbours
in sequence space with similar functions. We again find that
ensembling the BLAST and ProteInfer outputs provides per-
formance exceeding that of either technique used alone.

Deep models link sequence regions to function
Proteins that use separate domains to carry out more than
one enzymatic function are particularly useful in interpret-
ing the behaviour of our model. For example, S. cerevisiae
fol1 (accession Q4LB35) catalyses three sequential steps of
tetrahydrofolate synthesis, using three different protein do-
mains (Fig. 4A). This protein is in our held-out test set, so
no information about its labels was directly provided to the
model.
To investigate what sequence regions the neural network is
using to make its functional predictions, we used class ac-
tivation mapping (CAM) (68) to identify the sub-sequences
responsible for the model predictions. We found that sep-
arate regions of sequence cause the prediction of each enzy-
matic activity, and that these regions correspond to the known
functions of these regions (Fig. 4B). This demonstrates that
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The key: collect and leverage the data

Data modelling pipelines based on alignment and similarity:
• Diversified datasets splitting: training, validation, testing
• A NN classifier as a baseline for the deep learning.

Data augmentation pipelines:
• Label propagation and transformation: A protein ->

HMMScan -> domain annotations -> statistical association
modelling -> EC/GO labels.

• Mutations in disordered regions have negligible effect, except
for mutations to phenylalanine (P), tyrosine (T) and
tryptophan (W), which promote order.
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Industrial R&D for real-world problems
Methods = model-centric AI + data-centric AI

• Implement SOTA solutions & productise them.
• Build modularised AI toolboxes, end-to-end AI service

pipelines.

Source: https://dida.do/blog/data-centric-machine-learning

Data collection, curation, and pre-processing take ∼95% of the
effort, and are harder to automate.
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Industrial AI Research
Processes and management

1 Suggest research directions and write proposals to the board
(CEO and CSO).

2 Plan and Lead research, via task breakdown and an agreed
completion timeline tracked by Jira and Confluence.

3 Collaborate, control quality, and maintain conventions using
the peer review process, for both code and documentation.
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Thanks for your attention.
Questions and discussions are very welcome.

Research topics and interests of Dr. (Amos) Xinshao Wang:
• Deep distance metric learning
• Robust deep learning
• Omics AI + Bioinformatics
• Active learning
• EDA + Data Visualisation

Google Scholar: yOBhB7UAAAAJ
Github: https://github.com/XinshaoAmosWang
Homepage+Blogs: https://xinshaoamoswang.github.io/
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