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@ Self introduction
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by Royal
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* A senior ML
Research Scientist at
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* A founding technical
member at Zenith Ai
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Qutline
@® Highlights of work and experience
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Work and experience (= 90% leading)

@ Deep distance metric learning
[ ]

® Robust deep learning, model calibration and uncertainties:
® A PhD student as the 1st author:

® Preprint (56 citations):

©® (Oxford) Postdoc, Visit Scholar on Al health care (e.g., ECG)

©® (Zenith Ai) Sr. Researcher on Omics Al (e.g., DNA, tRNA,
protein, amino acid, ribosome, molecule docking /
AlphaFold2 / biochemistry)
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https://arxiv.org/pdf/1903.03238.pdf
https://arxiv.org/pdf/1811.01459.pdf
https://openreview.net/forum?id=HHIFHJtJeGA
https://openreview.net/forum?id=HHIFHJtJeGA
https://arxiv.org/abs/2005.03788
https://arxiv.org/pdf/1903.12141.pdf
https://arxiv.org/pdf/1903.12141.pdf
https://arxiv.org/pdf/1903.12141.pdf
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© Technical novelty and principle: Example weighting is universal
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Technical novelty and principle

Example weighting is universal in deep learning

We define our interpretation of example weighting [5]:

Definition (Example Weighting). In gradient-based optimi-
sation, the derivative of an example can be interpreted as its
effect on the update of a model. Therefore, a derivative’s
magnitude function equals to a weighting scheme.

Accordingly, a change of the derivative magnitude function, is
implicitly equivalent to, modifying an example weighting scheme.
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@ Deep distance metric learning
Definition & Overview

Projects: Vision applications
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Deep distance metric: Overview
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Deep distance metric: Vision applications

® General-purpose image/video clustering / retrieval
® Body/Face image/video re-identification (i.e., retrieval)
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Query The top 4 images in the ranked list of each query
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Outline

@ Robust deep learning (scope: transparent and interpretable ML)
Understanding real-world data and why do we need it
Learning objectives

Project: ProSelfLC: Progressive Self Label Correction
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Why do we need robust deep learning?

Understanding the real-world data with adverse cases

This video is labelled as the person wearing green shirt.
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Adverse cases in real-world data

Out-of-distribution anomalies: Know the unknown
@ The inputs contain only background: no semantic information.

® The labels do not belong to any class in the training set.

In-distribution anomalies: Detect => Ignore or Correct

@ Single-label noise: also common in annotating molecules

® Noisy annotations.
® Missing annotations.

® Multi-label noise: to be solved by multi-label training. E.g.,
one molecule may have multiple biological functions.
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Learning objectives of robust deep learning

What is the meaning of robustness here?

@ To learn meaningful patterns on semantically clean data.

® Without fitting errors/bias.
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pi = p(yi|x;) : probability of predicting x; to its oracle y;.

©® Generalisation to unseen data.
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Generalise to the unseen (e.g., remote
homology)

Build train-validation datasets properly

L . test set
E . protein

.
trainset *,
proteins

[1] "Using deep learning to annotate the protein universe." Nature
Biotechnology (2022).
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Project: Progressive Self Label Correction
To uncover how a deep model learns under noise [6]
1. To reward a low-entropy status other than penalise.
2. Model calibration.

—— Test: accu —— Clean subset: accu — Noisy subset: accu
—==- Test: confyy === Clean subset: conf,; === Noisy subset: conf
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(a) Standard CCE. (b) ProSelfLC with an AT (ours).

Figure: accu and conf,) along with the iteration when training ResNet18
on CIFAR-100. The symmetric noise rate is r = 40%.
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@ Omics Al
Robust protein understanding

Deep distance metric: EDA + Active Learning
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Token-level
classification

|
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Input
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[3] "ProtTrans: Toward Understanding the Language of Life Through Self-Supervised Learning." IEEE

Robust protein understanding

Use the pre-trained transformers to predict or design
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embedding
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Transactions on Pattern Analysis and Machine Intelligence (2022).
[4] "Neural networks to learn protein sequence—function relationships from deep mutational scanning
data." Proceedings of the National Academy of Sciences (2021).
[6] "ProSelfLC: Progressive Self Label Correction Towards A Low-Temperature Entropy State." Ours
under peer review.

Predict scores for new variants

G177L, M189T ?
T159L ?

G177L, M189T | 0.003
T159L 0.388
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Deep distance metric for Omics Al

@ Exploratory data analysis (EDA): data variances.

® Intraclass: remote homology/evolutionary information
® Interclass: how to discriminate biological molecules/sequences.

@® lterative active learning for the efficiency of time, data and
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Thanks for your attention.
Questions and discussions are very welcome.

Research topics of Dr. (Amos) Xinshao Wang:

® Deep distance metric learning

Robust deep learning

Omics Al + Bioinformatics

Active learning
e EDA + Visualisation
Homepage:
Blogs:
LinkedIn:

Github:
Google Scholar:
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