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Overlook: core research questions we study

1 In Self LC, how much should we trust a learner to leverage its
knowledge?
• The trust score is fixed or updated stage-by-stage in prior work.
• ProSelfLC modifies the target progressively, is end-to-end

trainable, and requires negligible extra cost.

2 Should we penalise a low-entropy status or reward it?
• OR methods penalise low entropy while LC rewards it.
• ProSelfLC redirects and promotes entropy minimisation, which

is in marked contrast to recent practices of confidence penalty
[6, 4, 1].



BEYOND SEMANTIC CLASS
THE SIMILARITY STRUCTURE IN A LABEL DISTRIBUTION

A label distribution defines what to learn:
• Definition 1 (Semantic Class). Given a target label

distribution ~q(x) ∈ RC , the semantic class is defined by
arg maxj ~q(j |x), i.e., the class whose probability is the largest.

• Definition 2 (Similarity Structure). In CCE, LS and CP, a
data point has an identical probability of belonging to other
classes except for the semantic class. Instead, in LC, a target
label distribution captures the probability difference of an
example being predicted to every class. We define it to be the
similarity structure of one example versus all training classes.



An overview of label (target) modification
OR(LS and CP) + LC(Self LC and Non-self LC)
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OR includes LS [6] and CP [4], which smoothes similarity structure:

• LS softens a target by adding a uniform label distribution.
• CP changes the probability 1 to a smaller value 1− ε in the

one-hot target.
The double-ended arrow means factual equivalence, because
an output is definitely non-negative after a softmax layer.



An overview of label (target) modification
OR(LS and CP) + LC(Self LC and Non-self LC)
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Self LC: p is the output of a learner itself. Non-self LC: p is the output  of an auxiliary learner. 

auxiliary 
learner

target 
learner

target learner

• LC contains Self LC [3, 5, 7] and Non-self LC [2].

• The convex combination parameter ε defines how much a
predicted label distribution is trusted.



Drawbacks of existing target modification
Why Self LC to exploit a model’s self knowledge?

1 OR methods naively penalise confident outputs without
leveraging easily accessible knowledge from other learners or
itself.

2 Non-self LC relies on accurate auxiliary models.
3 Self LC:

• It exploits its own knowledge;
• It requires no extra learners;
• However, how much should we trust a learner to leverage

its knowledge?



Overview of existing variants of Self LC
Without considering a model’s knowledge grows as time goes

1 In bootstrapping, ε is fixed throughout the training process.
2 Joint Optimisation fully trusts a learner by setting ε = 1, and

uses stage-wise training to gradually train the model.
• Stage-wise training requires a significant human intervention

and is time-consuming in practice.

3 Requirements of improving Self LC
• End-to-end trainable.
• Negligible extra cost.
• Modifies the target progressively and adaptively as training

goes.



To penalise or reward a low-entropy status?
The 2nd core research question we studied

• OR methods penalise low entropy ⇒ OR is against entropy
minimisation principle.

• LC rewards a low-entropy status ⇒ LC defends entropy
minimisation principle.
• LC has the same principle as the widely used

expectation–maximization (EM) algorithm.



ProSelfLC
Self Trust according to Training Time and Confidence

ε indicates how much a predicted label distribution is trusted.
For any x, we summarise the loss and modified label:

L(~qProSelfLC, p; εProSelfLC) = H(~qProSelfLC, p) = E~qProSelfLC(− log p),

~qProSelfLC = (1− εProSelfLC)q + εProSelfLCp,
εProSelfLC = g(t)× l(p),

g(t) = h(t/Γ− 0.5,B) ∈ (0, 1),⇒ Trusting learning time
l(p) = 1−H(p)/H(u) ∈ (0, 1).⇒ Trusting sample confidence

(1)
t and Γ are the iteration (time) counter and the number of total
iterations, respectively.
h(·) is a logistic function where B controls its smoothness.



ProSelfLC
Self Trust according to Training Time and Confidence

Table: Case analysis of ProSelfLC. Consistency is determined merely by
the semantic class.

l(p)

g(t) 0.1(non-confident) 0.9 (confidently
consistent) 0.9 (confidently

inconsistent)

The earlier phase 0.1 0.01 0.09 0.09

The later phase 0.9 0.09 0.81 0.81(correct the
semantic class)

• We use concrete values, e.g., 0.1 and 0.9, for more concise
interpretation.
• We bold the special case, where an output distribution p is

confident but inconsistent with q.



ProSelfLC
Experiments on CIFAR-100 with 40% asymmetric label noise
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Figure: Study of setting ε using three schemes: global trust and local
trust, merely global trust, and fixed ε.
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ProSelfLC
Training Dynamics On CIFAR-100 with asymmetric label noise

r = 0.4.
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(a) Correct fitting.
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(b) Wrong fitting.



ProSelfLC
Training Dynamics On CIFAR-100 with asymmetric label noise

r = 0.4.
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ProSelfLC
Training Dynamics On CIFAR-100 with asymmetric label noise

r = 0.4.
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(a) Entropy of clean subset.
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(b) Entropy of noisy subset.

Figure: Should we penalise a low-entropy status or reward it?



Summary/Conclusion

1 ProSelfLC:
• enhance the similarity structure information over training

classes.
• correct the semantic classes of noisy label distributions.
• is the first method to trust self knowledge progressively and

adaptively.

2 Our extensive experiments:
• defend the entropy minimisation principle;
• demonstrate the effectiveness of ProSelfLC in clean and noisy

settings.

3 Code:
https://github.com/XinshaoAmosWang/ProSelfLC-CVPR2021

https://github.com/XinshaoAmosWang/ProSelfLC-CVPR2021


Thanks for your attention !
Questions are greatly welcome!
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