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A label distribution defines what to learn.

> Semantic class: which class has the largest probability?

> Similarity structure: how each data point is similar to different classes.
An overview of label (target) modification approaches.
> Output regularisation (OR) makes similarity structure smoothed.

> Label correction (LC) corrects semantic class and smoothes similarity

Self knowledge or predefined annotations, how to trust?

> The design principles of ProSelfLC:

e Deep neural networks learn meaningful patterns before fitting noise:
when a model learns from scratch, human annotations are more reliable
than its own predictions in the early phase, during which the model Is
learning simple meaningful patterns before fitting noise [3].

e Minimum entropy regularisation: as a learner attains confident
knowledge as time progresses, we leverage It to revise annotated labels.

This Is surrounded by the minimum entropy regularisation [9, 10].

> Progressive and adaptive label correction:
e Global trust score g(t) denotes how much we trust a learner. It Is
Independent of data points, thus being global.
e | ocal trust score I(p) indicates how much we trust an output
distribution p, which Is data-dependent.
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Why Self LC? To exploit a model’s self knowledge.

> OR methods naively penalise confident outputs without leveraging easily
accessible knowledge from other learners or itself.

> Non-self LC relies on accurate auxiliary models to generate predictions.
The core research questions we study:

> In Self LC, how much should we trust a learner to leverage its knowledge?

he trust score Is fixed or updated stage-by-stage In prior work. ProSelfLC
modifies the target progressively, is end-to-end trainable, and requires
negligible extra cost.

> Should we penalise a low-entropy status or reward It?
e OR methods penalise low entropy while LC rewards it.
e ProSelfLC redirects and promotes entropy minimisation, which is in
marked contrast to recent practices of confidence penalty [42, 33, 6].

eproSelfLCc = g(t) X I(p)
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-
Qo

Q dynamic € = g(t) x l(p)

~ v+ dynamic € = g(t) 2000040 0.6 000420¢

= 06 | s fixed e = 0.50 o

7 ] > 0.5

E E%I R ,"'

o i T = 0.4 IO L ALY &

= 047 &/ *'f T~ = ?':"1..-"'5 3'*" ’

o ‘ﬁ.‘.‘l ., '7*:‘:?'.‘1 . + 0.3 *é.

5 Fg ot adk a 3¢

= . "] : 02

£02r 8 [

= $ 0.1 §

3 £

“ 0 ““ | . . 0 O . . .
0 1 2 3 0 1 2 3

[terations 10 4 Iterations <10 4

(a)Semantic class correction (b) Generalisation

O
»

O O 90 90 0
- N W Ao

Experimental results
| - 0.8
«¢: CCE P
— 1S ol
..... CP 4 i.-"*' ~. 0.6
-»#: Boot-soft f'a-" S
ProSelfL.C i -
§ = 0.4
3 G
2 0.2
ke
"/

Fittting of the noisy subset

—y

o

llllllllll

Summary/Conclusion

> ProSelfLC:
e enhance the similarity structure information over training classes;
e correct the semantic classes of noisy label distributions;
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e Is the first method to trust self knowledge progressively and adaptively.

> Our extensive experiments:
e defend the entropy minimisation principle;

e demonstrate the effectiveness of ProSelfLC in clean and noisy settings.

> Code: https://github.com/XinshaoAmosWang/ProSelfLC-CVPR2021
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