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Abstract

Video person re-identification (re-ID) plays an important

role in surveillance video analysis. However, the perfor-

mance of video re-ID degenerates severely under partial oc-

clusion. In this paper, we propose a novel network, called

Spatio-Temporal Completion network (STCnet), to explic-

itly handle partial occlusion problem. Different from most

previous works that discard the occluded frames, STCnet

can recover the appearance of the occluded parts. For one

thing, the spatial structure of a pedestrian frame can be

used to predict the occluded body parts from the unoccluded

body parts of this frame. For another, the temporal patterns

of pedestrian sequence provide important clues to generate

the contents of occluded parts. With the spatio-temporal in-

formation, STCnet can recover the appearance for the oc-

cluded parts, which could be leveraged with those unoc-

cluded parts for more accurate video re-ID. By combining a

re-ID network with STCnet, a video re-ID framework robust

to partial occlusion (VRSTC) is proposed. Experiments on

three challenging video re-ID databases demonstrate that

the proposed approach outperforms the state-of-the-arts.

1. Introduction

Video person re-identification (re-ID) aims at matching

the same person across multiple non-overlapping cameras,

which has gained increasing attention in recent years. How-

ever, it remains a very challenging problem due to large

variations of appearance caused by camera viewpoints,

background clutter, and especially partial occlusion. The

performance of video re-ID usually degenerates severely

under partial occlusion. This problem is difficult to tackle as

any part of the person may be occluded by other pedestrians

and environmental objects (e.g. bicycles and indicators).

Typical video re-ID methods [21, 30, 32] do not take into

account the effect of partial occlusion. They represent each

frame of a video as a feature vector and compute an aggre-

gate representation across time with average or maximum

pooling. In the presence of partial occlusion, the video fea-

ture is usually corrupted due to the equal treatment of all

frames, leading to severe performance degeneration.

Recently, the attention mechanism has been introduced

to video re-ID in order to deal with partial occlusion

[18, 43, 33, 15, 3]. They select discriminative frames from

video sequences and generate informative video represen-

tation. Although these approaches have a certain tolerance

to partial occlusion, it is not ideal to discard the occluded

frames. On one hand, the remaining visible portions of

the discarded frames may provide strong cues for re-ID.

So these methods lost too much appearance information in

video features, making them difficult to identify the person.

On the other hand, the discarded frames interrupt the tem-

poral information of video. The works [21, 30, 32] have

verified that the temporal information of video can help to

identify the person. For instance, if different persons have

similar appearance, we can disambiguate them from their

gaits. Therefore, these methods may still fail when the par-

tial occlusion occurs.

In this work, we propose Spatial-Temporal Completion

network (STCnet) to explicitly tackle the partial occlusion

problem by recovering the appearance of the occluded parts.

For one thing, according to the spatial structure of pedes-

trian frame, the visible (unoccluded) body parts can be used

to predict the missing (occluded) body part of a person. For

another, because of the temporal patterns of pedestrian se-

quence, the information from adjacent frames is helpful for

recovering the appearance of the current frame. Motivated

by the two facts, we design the spatial structure generator

and temporal attention generator in STCnet. The spatial

structure generator exploits the spatial information of the

frame to predict the appearance of the occluded parts. The

temporal attention generator exploits the temporal informa-

tion of the video with a novel temporal attention layer to

refine the parts generated by the spatial generator. With the
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spatial and temporal generators, STCnet is able to recover

the occluded parts.

Furthermore, we propose an occlusion-free video re-ID

framework by combining a re-ID network with STCnet

(VRSTC), where the unoccluded frames are used to train

and test the re-ID network. Due to the superior comple-

tion ability of STCnet, the video re-ID framework, VRSTC,

achieves robustness to partial occlusion. We demonstrate

the effectiveness of the proposed framework on three chal-

lenging video re-ID datasets, and our method outperforms

the state-of-art methods under multiple evaluation metrics.

2. Related Works

Person re-identification. Person re-ID for still images

has been extensively studied [41, 20, 16, 37, 14, 38, 28].

Recently, researchers start to pay attention to video re-ID

[17, 21, 30, 32, 43, 15, 33, 18, 27]. McLaughlin et al. [21]

and Wu et al. [30] proposed a basic pipeline for deep video

re-ID. First, the frame features are extracted by convolu-

tional neural network. Then a recurrent layer is applied to

incorporate temporal context information into each frame.

Finally, the temporal average pooling is adopted to obtain

video representation. Wu et al. [32] further proposed a tem-

poral convolutional subnet to extract local motion informa-

tion. These methods verify that the temporal information

of video can help to identify the person. However, because

these methods treat each frame of video equally, the frames

with partial occlusion will distort the video representation.

To handle partial occlusion, the attention based ap-

proaches are gaining popularity. Zhou et al. [43] proposed a

RNN temporal attention mechanism to select the most dis-

criminative frames from video. Liu et al. [18] used a con-

volutional subnet to predict quality score for each frame

of video. Xu et al. [33] presented a Spatial and Tem-

poral Attention Pooling Network, where the spatial atten-

tion pooling layer selected discriminative regions from each

frame and the temporal attention pooling selected infor-

mative frames in the sequence. Similarly, Li et al. [15]

used multiple spatial attention modules to localize distinc-

tive body parts of person, and pooled these extracted local

features across time with temporal attention.

Overall, the above methods process partial occlusion

problem by discarding the occluded parts, which results in

the loss of spatial and temporal information of video. Dif-

ferent from the existing methods, we explicitly tackle the

partial occlusion problem by recovering the occluded parts.

Then the recovered parts are leveraged together with the un-

occluded parts for robust video reID under partial occlusion.

Image completion. Image completion aims to fill the

missing or masked regions in images with plausibly synthe-

sized contents. It has many applications in photo editing,

textual synthesis and computational photography. Early

works [8, 1] attempted to solve the problem by matching

and copying background patches into the missing regions.

Recently, deep learning approaches based on Generative

Adversarial Network (GAN) [7] had emerged as a promis-

ing paradigm for image completion. Pathak et al. [23] pro-

posed Context Encoder that generated the contents of an

arbitrary image region conditioned on its surroundings. It

was trained with pixel-wise reconstruction and an adversar-

ial loss, which produced sharper results than training the

model with only reconstruction loss. Iizuka et al. [11] im-

proved [23] by using dilated convolution [35] to handle ar-

bitrary resolutions. In [11], global and local discriminators

were introduced as adversarial losses. The global discrimi-

nator pursued global consistency of the input image, while

the local discriminator encouraged the generated parts to be

valid. Our proposed STCnet builds on [11] and extends it to

exploit the temporal information of video by the proposed

temporal attention module. In addition, STCnet employs

a guider sub-network endowed with a re-ID cross-entropy

loss to preserve the identities of the generated images.

3. Spatial-Temporal Completion network

In this section, we will first illustrate the overview of

the proposed STCnet. Then we will demonstrate the de-

tails about each module of STCnet. Finally, the objective

function to optimize STCnet will be given.

3.1. Network Overview

The key idea of STCnet is to alleviate the interference of

occluders on the extracted features for pedestrian retrieval

via explicitly recovering the occluded parts with spatio-

temporal information of video. The network architecture

of STCnet is shown in Figure 1.

STCnet consists of spatial structure generator, temporal

attention generator, two discriminators and an ID guider

subnetwork. The spatial structure generator leverages the

spatial structure of the pedestrian frame, and makes an ini-

tial coarse prediction for the contents of occluded parts con-

ditioned on the visible parts of this frame. The temporal at-

tention generator takes use of the temporal patterns of the

video, and refines the contents of the occluded parts with

the information from adjacent frames. We introduce a local

discriminator for the occluded regions to generate more re-

alistic results, and a global discriminator for the entire frame

to pursue the global consistency. In addition, an ID guider

subnetwork is adopted to preserve the ID label of the frame

after completion.

3.2. Spatial Structure Generator

Because of spatial structure of the frames in pedestrian

video, the contents of occluded parts can be predicted with

the visible parts of the frames. To the end, we design the

spatial structure generator to model the correlation between

the occluded and visible parts.
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Figure 1. Overview of STCnet. The spatial structure generator takes the masked frame as input and outputs the generated frame. The

temporal attention generator refines the generated frame with the adjacent frames. Two discriminators distinguish the synthesize contents

in the mask and whole generated frame as real and fake. The ID guider network is to ensure the identity of the generated frame.

Extract
Patches

Current Frame 
Feature

Adjacent 
Frame Feature cosine 

similarity

Extract
Patches

Output Attention
Feature
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Figure 2. Illustration of the temporal attention layer. For simplic-

ity, we only describe the generation process of one patch (oa,b) of

output feature. The generation process of other patches is similar.

Spatial structure generator is designed as an autoencoder.

The encoder takes a frame with white pixels filled in the

occluded parts (all the pixels in the occluded regions are

set to 0) as input, which is denoted as masked frame, and

produces a latent feature representation of this frame. The

decoder takes the feature representation and generates the

contents for the occluded parts. In addition, we adopt the

dilated convolution [35] in the encoder to enlarge the size

of the receptive fields, which can help to propagate the in-

formation from distant visible parts to the occluded parts.

The architecture of spatial structure generator is derived

from the completion network [11]. In term of layer im-

plementations, we use the convolution with 3 × 3 kernels

and ELUs [4] as activation functions. The encoder consists

of five convolutional layers and stacks four dilated convo-

lutional layers of that, which decreases the resolution to a

quarter of the original size of the input frame. The decoder

consists of two deconvolution layers [19] to restore the orig-

inal resolution of the frame.

3.3. Temporal Attention Generator

In view of the temporal patterns of video, the informa-

tion from adjacent frames can also be exploited to predict

the contents of the occluded parts. So we introduce a novel

temporal attention layer, which learns where to attend fea-

ture from adjacent frames to generate the contents of the oc-

cluded parts. It is differentiable and can be integrated into

the temporal attention generator.

The temporal attention layer is able to model relation-

ships between the generated frames of spatial generator and

the adjacent frames. For simplicity, we denote the generated

frames of spatial generator as current frames. As shown

in Figure 2, we first extract patches (3 × 3) in the current

frame feature (F ) and adjacent frame feature (R). Then,

we measure the normalized inner product (cosine similar-

ity) between the patch of F and the patch of R:

sa,b,a′,b′ = 〈
fa,b

||fa,b||2
,

ra′,b′

||ra′,b′ ||2
〉, (1)

where fa,b denotes the patch centered at location (a, b) in

current frame, ra′,b′ denotes the patch centered at location

(a′, b′) in adjacent frame, sa,b,a′,b′ indicates similarity be-

tween fa,b and ra′,b′ . Then we normalize the similarity with

the softmax function:

s∗a,b,a′,b′ =
exp(sa,b,a′,b′)

∑

c′d′ exp(sa,b,c′,d′)
. (2)

Finally, for each patch of current frame, it is updated via

aggregating all patches of adjacent frames with weighted

summation, where the weighs are decided by the similarity

between the corresponding two patches:

oa,b =
∑

a′b′

s∗a,b,a′,b′r(a
′, b′). (3)

To integrate temporal attention layer, we introduce three

parallel encoders in the temporal attention generator. An en-

coder for the occluded frame focuses on hallucinating con-

tents, while the other two encoders are for precious and next
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adjacent unoccluded frame receptively. Two temporal atten-

tion layers are appended on top of the encoders to attend on

adjacent frames features of interest. Output features from

three encoders are then concatenated and fed into a decoder

to obtain the final output. The architectures of the encoders

and decoder of the temporal generator are the same as those

in the spatial generator.

3.4. Discriminator

We adopt a local and a global discriminator to improve

the quality of generated contents of the occluded parts.

The local discriminator takes the occluded parts as inputs

and determines whether the synthesized contents in the oc-

cluded parts are real or not. It helps to generate detailed

appearance and encourages the generated parts to be valid.

The global discriminator takes the entire frames as inputs

and regularizes the global structure of the frames. The two

discriminators work collaboratively to ensure that the gen-

erated contents of occluded parts are not only realistic, but

also consistent with surrounding contexts.

The architecture of the two discriminators is similar to

[25], which consists of six convolutional layers and a sin-

gle fully-connected layer. All the convolutional layers use

3×3 kernels and a stride of 2×2 pixels to decrease the frame

resolution. The fully-connected layer uses sigmoid as acti-

vation function, which outputs the probability that the input

is real.

3.5. ID Guider

In order to make the completed (unoccluded) frames

boost the person re-ID performance, we introduce an ID

guider subnetwork to guide the generators more adapted to

re-ID problem. The ID guider subnetwork takes in the com-

pleted frames and output the classification results which are

forced to be the real categories. In this way, the identity

cues of the person are preserved during completion.

We employ ResNet-50 [9] as the backbone network and

modify the output dimension of the classification layer

to the number of training identities. Following [28], we

remove the last spatial down-sampling operation in the

ResNet-50 to increase retrieval accuracy with very light

computation cost added.

3.6. Object Function

STCnet is trained with three loss functions jointly: a

reconstruction loss to capture the overall structure, an ad-

versarial loss to improve the realness, and a guider loss to

preserve the ID of the generated frames. Notably, we re-

place pixels in the non-mask (unoccluded) region of gener-

ated frames with original pixels.

We first introduce the reconstruction loss Lr for the spa-

tial generator Gs and temporal generator Gt, which is the

L1 distances between the network output and the original

frame:

Lr = ||x− x̂1||1 + ||x− x̂2||1 (4)

x̂1 = M ⊙Gs((1−M)⊙ x) + (1−M)⊙ x (5)

x̂2 = M ⊙Gt(x̂1, xp, xn) + (1−M)⊙ x (6)

where x is the input of the spatial generator, xp and xn are

previous and next adjacent frames of x respectively, x̂1 and

x̂2 are the predictions of the spatial and temporal genera-

tors respectively, M is a binary mask corresponding to the

dropped frame region with value 1 wherever a pixel was

dropped and 0 for elsewhere, and ⊙ is the element-wise

product operation.

With the global discriminator Dg and local discriminator

Dl, we define a global adversarial loss La1
which reflects

the faithfulness of the entire frame, and a local adversarial

loss La2
which reflects the validity of the generated contents

in the occluded part:

La1
= min

Gs,Gt

max
Dg

Ex∼pdata(x)[logDg(x)

+ logDg(1− x̂2)]
(7)

La2
= min

Gs,Gt

max
Dl

Ex∼pdata(x)[logDl(M ⊙ x)

+ logDl(1−M ⊙ x̂2)]
(8)

where Pdata(x) represents the distribution of real frame x.

As for the ID guider network R, the guider loss Lc is the

simple cross-entropy loss, which is expressed as:

Lc = −

K
∑

k=1

qk logR(x̂2)k (9)

where K is the number of classes and q is the ground truth

distribution of the input frames.

Finally, the overall loss function is defined by:

L = Lr + λ1(La1
+ La2

) + λ2Lc (10)

where λ1 and λ2 are the weights to balance the effects of

different losses.

4. Occlusion-Free Video Person Re-ID

By combining STCnet with a re-ID network, we propose

a video re-ID framework VRSTC, which is robust to partial

occlusion. The framework of VRSTC is shown in Figure 3.

First, a similarity scoring mechanism is proposed to locate

the occluded parts of frames. Then, STCnet is adopted to

recover the appearance of the occluded parts. Finally, the

recovered regions are leveraged with those unoccluded re-

gions to train the re-ID network. Without designing compli-

cated model and loss function, our framework can achieve

great performance improvement.
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Figure 3. Pipeline of VRSTC.

4.1. Similarity Scoring

The works [18, 43, 33, 3] use the attention mechanism

to locate the occluded frames. These approaches usually

construct a subnetwork to predict the weight of each frame

in video. However, it is difficult for the subnetwork to au-

tomatically assign low weights to the occluded frames, as

there is no direct supervision for the weights.

Considering the concern above, we propose a similarity

scoring mechanism to generate the attention score for each

region of frames. Motivated by the observation that the oc-

clusion usually occurs in a few consecutive frames and the

occluders have different semantic features from the original

body parts, we use the cosine similarity between the frame

region feature and the video region feature as the score. For-

mally, we denote the input video as I = {It}
T
t=1, where T

indicates the length of the video. The frames are vertically

divided into three fixed regions equally It = {Iut , I
m
t , I lt},

where u, m, and l represent the upper, middle and lower

part of the frames respectively. The feature representation

of each region {vkt |k ∈ {u,m, l}} is extracted using con-

volutional neural network. The video region feature is then

obtained by average pooling according to temporal domain:

vk =
1

T

T
∑

t=1

vkt , where k ∈ {u,m, l} (11)

Next, the score of each frame region is calculated with

the following equation:

uk
t =

〈

vkt

||vkt ||2
,

vk

||vk||2

〉

(12)

In the last, we regard those regions with scores lower

than a threshold τ (0.89 in our work) as the occluded re-

gions. We replace the occluded regions with the generated

regions by STCnet to form a new dataset and train a re-ID

network with the new dataset.

4.2. Re-ID Network

Most re-ID networks and loss functions can combine

with STCnet. Note that STCnet can combine with the most

advanced re-ID models to further enhance the overall per-

formance. In order to verify the effectiveness of STCnet

as a kind of data enhancement method, we use a simple

re-ID network with average temporal pooling and the cross-

entropy loss.

We employ the modified ResNet-50 as the backbone net-

work. In order to capture temporal dependency, we embed

the non-local blocks [29] into the re-ID network. Different

from the previous works that only build temporal depen-

dency in the end, the non-local blocks can be inserted into

the earlier part of deep neural networks. This allows us to

build a richer hierarchical temporal dependency that com-

bines both non-local and local information.

5. Experiments

5.1. Datasets and evaluation protocols

iLIDS-VID dataset consists of 600 video sequences,

where 300 different identities are captured by two cameras.

Each video sequence contains 23 to 192 frames.

MARS dataset is the largest video re-ID benchmark with

1, 261 identities and around 20, 000 video sequences cap-

tured from 6 cameras. The bounding boxes are produced by

DPM detector [6] and GMMCP tracker [5].

DukeMTMC-VideoReID dataset is a subset of the

tracking dataset DuKeMTMC [26] for video person re-ID.

The pedestrian images are cropped from the videos for 12

frames every second to generate a tracklet.

Evaluation protocol: We adopt mean Average Preci-

sion (mAP) [40] and Cumulative Matching Characteristics

(CMC) [2] as evaluation metrics.

5.2. Implementation Details

In this subsection, we give the implementation details of

our approach. We use PyTorch [22] for all experiments.

Pre-training a re-ID network. We train ResNet-50

with cross-entropy loss to be the ID guider of STCNet.

In training term, four-frame input tracks are cropped out

from an input sequence. The frame features are extracted

by ResNet-50, then the average temporal pooling is used

to obtain the sequence feature. Input images are resized

to 256 × 128. The batch size is set to 32. For the data

augmentation, we only use random horizontal mirroring

for training. We adopt the Adaptive Moment Estimation

(Adam) [12] with weight decay of 0.0005. The network

is trained for 150 epochs in total, with an initial learning

rate of 0.0003 and reduced it with decay rate 0.1 every 50

epochs.

Locating occluded regions. With the pretrained re-ID

network as feature extractor, we use the similarity scoring

mechanism to generate the score for each frame region. We

regard the regions whose scores are lower than τ as the oc-

cluded regions, and we define the frames without occluded

regions as the unoccluded frames. In our experiment, τ is

set to 0.89.
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Training STCnet. To train STCnet, we need to build a

training set consisting of the input occluded frames and tar-

get de-occluded frames. However, there is no ground-truths

for the occluded frames. So we only use the unoccluded

frames from the training set of target re-ID dataset to train

STCnet. Specially, we randomly mask a region of the unoc-

cluded frames as the inputs. The input and target frames are

resized to 128 × 64 and linearly scaled to [−1, 1]. The pa-

rameters of ID guider are fixed when training STCnet. We

optimize the spatial and temporal generators and two dis-

criminators with alternating Adam optimizer, and the learn-

ing rate is set to 0.0001. λ1 and λ2 are set to 0.001 and 0.1
respectively. Once the training is over, STCnet can recover

the appearance of the occluded regions.

Improving re-ID network with de-occluded frames.

The occluded regions of the frames in raw re-ID dataset are

replaced with the regions generated by STCnet to form a

new dataset. Then the re-ID network is trained and tested

with the new dataset. We embed the non-local block [29] in

the re-ID network to capture temporal dependency of input

sequence. According to the experiments in [29], five non-

local blocks are inserted to before the last residual block of

a stage. Three blocks are inserted into res4 and two blocks

are inserted into res3, to every other residual block. Other

settings are the same as those in the experiments of pre-

training a re-ID network. During testing, given an input of

entire video, the video feature is extracted using the trained

re-ID network for retrieval under cosine distance.

5.3. Ablation Study

5.3.1 Component Analysis of STCnet

We investigate the effect of each component of STCnet by

conducting several analytic experiments. Table 1 reports the

results of each component of STCnet. Baseline corresponds

to ResNet-50 trained on raw target dataset. NL embeds the

non-local blocks into the baseline model and improves the

results, which indicates that non-local blocks are effective

for integrating temporal information of video. In the other

experiments of this part, we replace the occluded regions

with generated regions by different completion models to

form a new dataset and train and test NL on the new dataset.

Spatial structure generator. Spa denotes the spatial

structure generator trained only with the spatial reconstruc-

tion loss. Compared with NL, Spa improves the rank-1 ac-

curacy by 1.3%, 0.9% and 1.1% on iLIDS-VID, MARS and

DukeMTMC-VideoReID respectively. The result shows

that the spatial structure generator, which utilizes the spa-

tial information of frames to recover the appearance of oc-

cluded regions, is useful for boosting re-ID performance.

Temporal attention generator. Spa+Tem consists of

spatial and temporal generators, which is trained with both

spatial and temporal reconstruction loss. By comparing Spa

and Spa+Tem, we can see that the proposed temporal gen-

Table 1. Comparative analysis of STCnet. The rank-1 CMC accu-

racy is reported and mAP is reported for MARS and DukeMTMC-

VideoReID in brackets.

Methods iLIDS MARS DukeMTMC

baseline 79.8 84.4 (77.2) 91.4 (90.0)

NL 80.1 86.1 (79.9) 91.8 (91.2)

Spa 81.4 87.0 (81.0) 92.9 (92.0)

Spa+AE 81.3 87.0 (80.8) 92.9 (91.9)

Spa+TAE 81.9 87.3 (81.0) 93.2 (92.2)

Spa+Tem 82.5 87.8 (81.6) 93.8 (92.7)

Spa+Tem+LD 82.7 87.9 (81.7) 94.1 (92.8)

Spa+Tem+LD+GD 82.9 87.9 (81.9) 94.4 (93.0)

STCnet 83.4 88.5 (82.3) 95.0 (93.5)

erator further improves accuracy. We argue that the tem-

poral attention layer can attend the information from adja-

cent frames, which makes the generated frames more se-

mantically consistent with the video sequence. The re-ID

network (NL) can then extract better temporal information

of the resulting sequence, leading to a more discriminative

video feature representation.

It is noteworthy that the improvement of temporal gen-

erator does not come from the increased depth by naively

adding extra layers to the spatial generator. To see this, we

also try two variants of temporal generator: Autoencoder

(AE) and Temporal Autoencoder (TAE). AE is a standard

autoencoder and only takes the predictions of spatial gen-

erator as inputs. It has the same encoder and decoder with

temporal generator expect the number of filters in the en-

coder is tripled. This controls for the total number of pa-

rameters in AE compared to temporal generator. TAE is the

temporal generator without the temporal attention layer. As

shown in Table 1, Spa+AE does not increase the accuracy

compared to Spa. This shows that the improvement of tem-

poral generator is not because it adds extra layers to the spa-

tial generator. In addition, the temporal generator performs

better than TAE. This improvement shows that the proposed

temporal attention layer makes better use of the temporal

information to generate more discriminative frames.

Discriminators. Spa+Tem+LD consists of the two gen-

erators and the local discriminator. Spa+Tem+LD+GD fur-

ther incorporates the global discriminator. Both are trained

with reconstruction and adversarial losses. From the results,

we can see that the discriminators only slightly improve the

performance. We argue that the discriminators aim to gen-

erate more visually realistic frames, without bringing too

much additional discriminant information for re-ID.

ID guider network. The final model STCnet is trained

with the reconstruction, adversarial and guider losses. The

generated samples achieve better performance with the ID

guider, which suggests that the ID guider is beneficial to

generate suitable samples for training re-ID network. The

improvement can be attributed to the ability of preserving
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Figure 4. The rank-1 and mAP on DukeMTMC-VideoReID (a)

different λ1 and fixed λ2=0.1, (b) different λ2 and fixed λ1=0.001.

Table 2. Comparison of different threshold τ in the similarity

scoring mechanism. The rank-1 CMC accuracies are reported

and mAP are reported for MARS and DukeMTMC-VideoReID

in brackets.

threshold (τ ) iLIDS MARS DukeMTMC

0 (baseline) 79.8 84.4 (77.2) 91.4 (90.0)

0.88 80.0 84.8 (77.2) 91.5 (90.3)

0.89 80.3 84.9 (77.4) 91.7 (90.5)

0.91 78.8 84.2 (77.0) 91.4 (90.6)

0.93 78.3 83.6 (76.6) 91.4 (90.5)

Images

up-part

mid-part

low-part

0.961 0.954 0.966 0.963 0.967 0.958 0.956 0.959

0.971 0.970 0.974 0.968 0.972 0.971 0.965 0.969

0.862 0.873 0.881 0.887 0.901 0.911 0.924 0.928

Figure 5. Scores of similarity scoring mechanism from one se-

quence. Red represents small score.

the underlying visual cues associated with the ID labels.

5.3.2 Influence of the parameters λ1 and λ2

λ1 and λ2 are two parameters to balance the relative ef-

fects of the adversarial loss and guider loss respectively.

We analyze the impact of the λ1 and λ2 on DukeMTMC-

VideoReID, and the results are shown in Figure 4 (a) and

(b) respectively. We observe that our method achieves the

best performance when λ1 is set to 0.001 and λ2 is set to

0.1. Notice that there will be a big performance degradation

when λ1 or λ2 are too big. The main reason is that STC-

net becomes difficult to converge if the adversarial loss or

guider loss takes a dominant role.

5.3.3 Influence of the threshold τ

We also carry out experiments to investigate the effect of

varying the threshold τ in the similarity scoring mechanism.

Table 3. Comparison with related methods on MARS. * denotes

those requiring optical flow as inputs.

Methods rank-1 rank-5 rank-10 mAP

Mars [39] 68.3 82.6 89.4 49.3

SeeForest [43] 70.6 90.0 97.6 50.7

Seq-Decision [36] 71.2 85.7 91.8 -

Latent Parts [14] 71.8 86.6 93.0 56.1

QAN [18] 73.7 84.9 91.6 51.7

K-reciprocal [42] 73.9 - - 68.5

RQEN [27] 77.8 88.8 94.3 71.7

TriNet [10] 79.8 91.4 - 67.7

EUG [31] 80.8 92.1 96.1 67.4

STAN [15] 82.3 - - 65.8

Snipped [3] 81.2 92.1 - 69.4

Snippet+OF* [3] 86.3 94.7 98.2 76.1

VRSTC 88.5 96.5 97.4 82.3

The experiment setting is as follows. Giving an input video

sequence, we first discard the frames with occluded regions

whose scores are lower than τ . The video feature is then

obtained with the remaining frames using average temporal

pooling. Finally, we use the obtained video feature to com-

pute the similarity between videos under cosine distance.

Notably, when τ = 0, we keep all frames of a video, which

is the same as the baseline model.

As shown in Table 2, there is an improvement in perfor-

mance when τ is increased, which implies that the discarded

frames would have corrupted the representation of video.

This result implicitly demonstrates the scores achieved by

similarity scoring can locate occluded frames. However, as

τ is further increased, the accuracy drops gradually. The

main reason is that the unoccluded frames may be discarded

with too large threshold. The network achieves the best per-

formance when τ = 0.89. So we set τ to 0.89 in our exper-

iments. Notably, the introduction of the frames completed

by STCnet can further improve the performance (see Table

1), which demonstrates that the contents restored by STCnet

can help identify the person.

In order to demonstrate the similarity scoring mecha-

nism more intuitively, the scores of one sequence from

DukeMTMC-VideoReID is visualized in Figure 5. Due to

the occlusion from another person, the scores of the lower

parts of the first four frames are relatively small. This results

further demonstrate the score achieved by the proposed sim-

ilarity scoring mechanism can reflect the visibility of each

region.

5.4. Comparison with State-of-the-arts

Table 3, 4 and 5 report the performance of our approach

and other state-of-the-art methods on MARS, DukeMTMC-

VideoReID and iLIDS-VID, respectively. On MARS and

DukeMTMC-VideoReID, our approach outperforms the

best existing methods. We attribute the improvements to
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Table 4. Comparison with methods on DukeMTMC-VideoReID.

Methods rank-1 rank-5 rank-10 mAP

EUG [31] 83.6 94.6 97.6 78.3

VRSTC 95.0 99.1 99.4 93.5

Table 5. Comparison with related methods on iLIDS-VID.

Methods rank-1 rank-5 rank-10 rank-20

LFDA [24] 32.9 68.5 82.2 92.6

KISSME [13] 36.5 67.8 78.8 87.1

LADF [16] 39.0 76.8 89.0 96.8

STFV3D [17] 44.3 71.7 83.7 91.7

TDL [34] 56.3 87.6 95.6 98.3

Mars [39] 53.0 81.4 - 95.1

SeeForest [43] 55.2 86.5 - 97.0

CNN+RNN* [21] 58.0 84.0 91.0 96.0

Seq-Decision [36] 60.2 84.7 91.7 95.2

ASTPN* [33] 62.0 86.0 94.0 98.0

QAN [18] 68.0 86.8 95.4 97.4

RQEN [27] 77.1 93.2 97.7 99.4

STAN [15] 80.2 - - -

Snippet [3] 79.8 91.8 - -

Snippet+OF* [3] 85.4 96.7 98.8 99.5

VRSTC 83.4 95.5 97.7 99.5

the recovered contents of the occluded parts. The effec-

tive combination with STCnet makes our approach superior

than the methods which only use the raw dataset. It is worth

noting that DukeMTMC-VideoReID is recently proposed

by [31] and our baseline model has outperformed [31] by

7.8% and 11.7% on rank-1 and mAP respectively. We hope

it will serve as a new baseline on DukeMTMC-VideoReID.

On iLIDS-VID, our approach achieves slightly lower per-

formance than Snippet+OF [3]. Note that Snipper+OF uses

additional optical flow as input to provide motion features,

which is not utilized in our framework. In addition, our ap-

proach outperforms Snippet (without optical flow) signifi-

cantly, which is a more fair comparison.

5.5. Visualizing the effect of STCnet

We visualize the generated frames of STCnet for intu-

itive exploration. Some partially occluded images are se-

lected for evaluation. Figure 6 provides a vivid illustration

how STCnet recovers the contents of occluded parts and im-

proves the extracted features. Specifically, when a person is

occluded by some body part of other pedestrians, the feature

representation extracted for the person is often corrupted by

the visual appearances of the other pedestrians. As shown in

the sixth column of Figure 6 (c), the part of other pedestri-

ans is activated by the re-ID network, which harms the fea-

ture representation of the target person. In addition, when

a person is occluded by the environmental objects such as

(a)

(b)

(c)

(d)

iLIDS-VID MARS DukeMTMC

Figure 6. Visual examples of STCnet. From top to bottom: (a)

original image, (b) output of STCnet, (c) the activation maps

of original image (d) the activation maps of completed image.

Warmer color with higher value

indicator and bicycles, there will be severe loss of body in-

formation in the feature extracted from the person (e.g. the

second column of Figure 6 (c)). On the contrary, once STC-

net recovers the contents of the occluded regions, the re-ID

model will take more effective regions into account and dis-

cover new discriminative clues therefrom to recognize the

person more correctly.

6. Conclusion

In this work, we present a novel framework combined a

re-ID network with a completion network STCnet for video

re-ID under partial occlusion. Aiming at explicitly tackling

the partial occlusion problem, we design the STCnet to re-

cover the appearance for the occluded regions and leverage

the recovered regions with the unoccluded regions to train

the re-ID network. Experiments on three datasets show that

the proposed method outperforms the state-of-the-art video

re-ID approaches.

In the future, we will explore other types of deep gen-

erative architectures for recovering the appearance for the

frames with extremely severe occlusion.
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